Objective Quality Metrics Assessment for Cloud Gaming

J. Husić, Sara Kozić, Sabina Baraković
{"title":"Objective Quality Metrics Assessment for Cloud Gaming","authors":"J. Husić, Sara Kozić, Sabina Baraković","doi":"10.2478/bhee-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to provide objective quality metrics assessment for cloud gaming using machine learning algorithms. Three classification algorithms (i.e., Random Forest, Random Three and J-48) have been used for the development of models for objective quality assessment of two metrics: blurriness and blockiness. The results indicate that Random Forest has the best performance in this experimental case of objective quality metrics assessment for cloud gaming. Future research activities will cover comparison of a broad range of objective quality metrics and machine learning algorithms while using larger dataset to enhance the results significance.","PeriodicalId":236883,"journal":{"name":"B&H Electrical Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"B&H Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bhee-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper aims to provide objective quality metrics assessment for cloud gaming using machine learning algorithms. Three classification algorithms (i.e., Random Forest, Random Three and J-48) have been used for the development of models for objective quality assessment of two metrics: blurriness and blockiness. The results indicate that Random Forest has the best performance in this experimental case of objective quality metrics assessment for cloud gaming. Future research activities will cover comparison of a broad range of objective quality metrics and machine learning algorithms while using larger dataset to enhance the results significance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云游戏的客观质量指标评估
摘要本文旨在利用机器学习算法为云游戏提供客观的质量指标评估。三种分类算法(即Random Forest, Random Three和J-48)已用于开发模型,以对两个指标进行客观质量评估:模糊性和块性。结果表明,随机森林在云游戏客观质量指标评估的实验案例中表现最佳。未来的研究活动将涵盖广泛的客观质量指标和机器学习算法的比较,同时使用更大的数据集来增强结果的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Capacity of the Distribution Network by Changing Consumers’ Habits - Case Study Long-Range Remote Control Based on LoRa Transceivers Digital Transformation Path of Manually Collected Meter Reading Data Profile Optimisation in Real Distribution Networks (Case Study Long MV Feeder) New Functions of VSC Based HVDC Transmission Systems that Can Effectively Support the Future South-East European Grid with Low Inertia and Large Amount of Res Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1