Optimal Design of Modified Power System Stabilizer Using Multi Objective Based Bio Inspired Algorithms

D. Butti, S. Mangipudi, S. Rayapudi
{"title":"Optimal Design of Modified Power System Stabilizer Using Multi Objective Based Bio Inspired Algorithms","authors":"D. Butti, S. Mangipudi, S. Rayapudi","doi":"10.4018/IJEOE.2018100102","DOIUrl":null,"url":null,"abstract":"In this article, a multi objective and a novel objective based Power System Stabilizer (PSS) design is proposed for a modified Heffron - Philiphs model (MHP) using bio inspired algorithms. A conventional Heffron – Philphs (CHP) model is developed by taking infinite bus voltage as reference, whereas MHP model is developed by taking transformer high voltage bus voltage as reference, which makes independent of external system data for the PSS design. PSS parameters are optimized using differential evolution (DE) algorithm and Firefly (FF) algorithm to obtain better dynamic response. The proposed method is tested on various operating conditions under different typical disturbances to test efficacy and robustness. Simulation results prove that better dynamic performance is obtained with the proposed stabilizers over the fixed gain stabilizers. This method of tuning would become a better alternative to conventional stabilizers as conventional stabilizers require retuning of parameters mostly when operating condition changes, which is a time-consuming process and laborious. Eigen value analysis is also done to prove the efficacy of the proposed method over the conventional methods.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2018100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this article, a multi objective and a novel objective based Power System Stabilizer (PSS) design is proposed for a modified Heffron - Philiphs model (MHP) using bio inspired algorithms. A conventional Heffron – Philphs (CHP) model is developed by taking infinite bus voltage as reference, whereas MHP model is developed by taking transformer high voltage bus voltage as reference, which makes independent of external system data for the PSS design. PSS parameters are optimized using differential evolution (DE) algorithm and Firefly (FF) algorithm to obtain better dynamic response. The proposed method is tested on various operating conditions under different typical disturbances to test efficacy and robustness. Simulation results prove that better dynamic performance is obtained with the proposed stabilizers over the fixed gain stabilizers. This method of tuning would become a better alternative to conventional stabilizers as conventional stabilizers require retuning of parameters mostly when operating condition changes, which is a time-consuming process and laborious. Eigen value analysis is also done to prove the efficacy of the proposed method over the conventional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标生物算法的改进型电力系统稳定器优化设计
针对改进的Heffron - Philiphs模型(MHP),提出了一种基于目标的多目标电力系统稳定器(PSS)设计方法。传统的Heffron - Philphs (CHP)模型以无限母线电压为基准,而MHP模型以变压器高压母线电压为基准,使得PSS设计不依赖于外部系统数据。采用差分进化(DE)算法和萤火虫(FF)算法对PSS参数进行优化,以获得更好的动态响应。在不同的典型干扰条件下对该方法进行了测试,以验证其有效性和鲁棒性。仿真结果表明,该稳定器比固定增益稳定器具有更好的动态性能。由于常规稳定器需要在操作条件发生变化时重新调整参数,因此该方法将成为常规稳定器的更好选择,这是一个耗时且费力的过程。通过特征值分析,证明了该方法相对于传统方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Site Selection for Solar Photovoltaic Power Plant in North Eastern State of India using Hybrid MCDM Tools Security Constrained Optimal Reactive Power Dispatch Using Hybrid Particle Swarm Optimization and Differential Evolution Visible Light Communication System for Indoor Positioning Using Solar Cell as Receiver A New Central Control Scheme for Future Micro-Grid Systems Considering Variable Speed Drive Systems and Fuzzy Logic Control System Comparative Study of Two Different Converters with its Controller for Grid Connected WECS with PMSG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1