Enhanced UAV pose estimation using a KF: experimental validation

C. de Souza, P. Castillo, R. Lozano, B. Vidolov
{"title":"Enhanced UAV pose estimation using a KF: experimental validation","authors":"C. de Souza, P. Castillo, R. Lozano, B. Vidolov","doi":"10.1109/ICUAS.2018.8453335","DOIUrl":null,"url":null,"abstract":"An experimental validation for improving pose estimation using a linear Kalman Filter (KF) is presented in this paper. The procedure is designed to lead with localization data degraded or lost. The methodology is focused on determination, tuning and dynamics changes in the covariance matrices in the KF algorithm. Several simulations are carried out in order to validate the methodology. Similarly several flights tests are conducted in real time for validating the observer scheme. A localization system is used and modified for emulating the GPS performance. Main results show the good behavior of the proposed methodology and a video of them is available for showing the capabilities of the algorithm.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An experimental validation for improving pose estimation using a linear Kalman Filter (KF) is presented in this paper. The procedure is designed to lead with localization data degraded or lost. The methodology is focused on determination, tuning and dynamics changes in the covariance matrices in the KF algorithm. Several simulations are carried out in order to validate the methodology. Similarly several flights tests are conducted in real time for validating the observer scheme. A localization system is used and modified for emulating the GPS performance. Main results show the good behavior of the proposed methodology and a video of them is available for showing the capabilities of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于KF的增强无人机姿态估计:实验验证
提出了一种利用线性卡尔曼滤波(KF)改进姿态估计的实验方法。该过程被设计为导致定位数据降级或丢失。该方法侧重于KF算法中协方差矩阵的确定、调整和动态变化。为了验证该方法,进行了几个仿真。同样,为了验证观测器方案,实时进行了几次飞行试验。为了模拟GPS的性能,采用了一种定位系统并对其进行了改进。主要结果表明了所提出的方法的良好行为,并提供了一个视频来展示算法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stabilization and Optimal Trajectory Generation for a Compact Aerial Manipulation System with a Delta-type Parallel Robot Vision-Based Autonomous Landing of a Multi-Copter Unmanned Aerial Vehicle using Reinforcement Learning Nonlinear Flight Control Design for Maneuvering Flight of Quadrotors in High Speed and Large Acceleration Integrated Navigation Based on DME+VOR/INS Under the Integrated Radio Condition Vision-based Integrated Navigation System and Optimal Allocation in Formation Flying
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1