Enhancing the ORCA framework with a new Fuzzy Rule Base System implementation compatible with the JFML library

Francisco J. Rodríguez-Lozano, D. Guijo-Rubio, Pedro Antonio Gutiérrez, J. M. Soto-Hidalgo, J. C. Gámez-Granados
{"title":"Enhancing the ORCA framework with a new Fuzzy Rule Base System implementation compatible with the JFML library","authors":"Francisco J. Rodríguez-Lozano, D. Guijo-Rubio, Pedro Antonio Gutiérrez, J. M. Soto-Hidalgo, J. C. Gámez-Granados","doi":"10.1109/FUZZ45933.2021.9494526","DOIUrl":null,"url":null,"abstract":"Classification and regression techniques are two of the main tasks considered by the Machine Learning area. They mainly depend on the target variable to predict. In this context, ordinal classification represents an intermediate task, which is focused on the prediction of nominal variables where the categories follow a specific intrinsic order given by the problem. Nevertheless, the integration of different algorithms able to solve ordinal classification problems is often unavailable in most of existing Machine Learning software, which hinders the use of new approaches. Therefore, this paper focuses on the incorporation of an ordinal classification algorithm (NSLVOrd) in one of the most complete ordinal regression frameworks, “Ordinal Regression and Classification Algorithms framework (ORCA)” by using both fuzzy rules and the JFML library. The use of NSLVOrd in the ORCA tool as well as a case study with a real database are shown where the obtained results are promising.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Classification and regression techniques are two of the main tasks considered by the Machine Learning area. They mainly depend on the target variable to predict. In this context, ordinal classification represents an intermediate task, which is focused on the prediction of nominal variables where the categories follow a specific intrinsic order given by the problem. Nevertheless, the integration of different algorithms able to solve ordinal classification problems is often unavailable in most of existing Machine Learning software, which hinders the use of new approaches. Therefore, this paper focuses on the incorporation of an ordinal classification algorithm (NSLVOrd) in one of the most complete ordinal regression frameworks, “Ordinal Regression and Classification Algorithms framework (ORCA)” by using both fuzzy rules and the JFML library. The use of NSLVOrd in the ORCA tool as well as a case study with a real database are shown where the obtained results are promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用与JFML库兼容的新的模糊规则库系统实现增强ORCA框架
分类和回归技术是机器学习领域考虑的两个主要任务。它们主要依靠目标变量进行预测。在这种情况下,有序分类代表了一种中间任务,其重点是对名义变量的预测,其中类别遵循问题给定的特定内在顺序。然而,在大多数现有的机器学习软件中,通常无法集成能够解决有序分类问题的不同算法,这阻碍了新方法的使用。因此,本文的重点是利用模糊规则和JFML库,在最完整的有序回归框架之一“有序回归和分类算法框架(ORCA)”中加入一个有序分类算法(nslword)。在ORCA工具中使用了nslword,并在实际数据库中进行了案例研究,获得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1