Adaptive multi-agent system for information retrieval

S. Maleki-Dizaji, H. Nyongesa, J. Siddiqqi
{"title":"Adaptive multi-agent system for information retrieval","authors":"S. Maleki-Dizaji, H. Nyongesa, J. Siddiqqi","doi":"10.1117/12.446766","DOIUrl":null,"url":null,"abstract":"The current exponential growth of the Internet precipitates a need for improved tools to help people cope with the volume of information available. Existing search engines such, as Yahoo, Alta vista and Excite are efficient in terms of high recall (percentage of relevant document that are retrieved from Internet), and fast response time, at the cost of poor precision (percentage of documents retrieved that are considered relevant). The problem is due to the lack of filtering, lack of specialisation, lack of relevance feedback, lack of adaptation and lack of exploration. One solution for the above problems is to use intelligent agents, which can operate autonomously and become better over time. The agents rely on a user model to improve their performance in retrieving the information. This paper presents an adaptive information retrieval (IR) that learns from the user feedback through an evolutionary method, namely, genetic algorithms (GA).","PeriodicalId":341144,"journal":{"name":"Complex Adaptive Structures","volume":"4512 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Adaptive Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.446766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current exponential growth of the Internet precipitates a need for improved tools to help people cope with the volume of information available. Existing search engines such, as Yahoo, Alta vista and Excite are efficient in terms of high recall (percentage of relevant document that are retrieved from Internet), and fast response time, at the cost of poor precision (percentage of documents retrieved that are considered relevant). The problem is due to the lack of filtering, lack of specialisation, lack of relevance feedback, lack of adaptation and lack of exploration. One solution for the above problems is to use intelligent agents, which can operate autonomously and become better over time. The agents rely on a user model to improve their performance in retrieving the information. This paper presents an adaptive information retrieval (IR) that learns from the user feedback through an evolutionary method, namely, genetic algorithms (GA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应多智能体信息检索系统
当前互联网的指数级增长促使人们需要改进工具来帮助人们处理海量的可用信息。现有的搜索引擎,如Yahoo, Alta vista和Excite,在高召回率(从互联网检索到的相关文档的百分比)和快速响应时间方面是高效的,但代价是精度较低(检索到的文档被认为是相关的百分比)。问题是由于缺乏过滤、缺乏专业化、缺乏相关反馈、缺乏适应和缺乏探索。上述问题的一个解决方案是使用智能代理,它可以自主操作,并随着时间的推移变得更好。代理依赖于用户模型来提高检索信息的性能。提出了一种基于遗传算法的自适应信息检索方法,该方法从用户反馈中进行学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approach to sequence DNA without tagging Designing mixed-metal supramolecular complexes Emergent system identification using particle swarm optimization Comments on the physical basis of the active materials concept Porphodimethenes/porphyrins: redox-switchable tetrapyrrolic macrocycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1