Thermo-Economic Analysis of Simple Cycle Steam Power Plant

Mohammed Abed, H. Sultan, F. Abood
{"title":"Thermo-Economic Analysis of Simple Cycle Steam Power Plant","authors":"Mohammed Abed, H. Sultan, F. Abood","doi":"10.33971/bjes.23.1.12","DOIUrl":null,"url":null,"abstract":"Thermal steam power plants represent the most important and dependable type for supplying the base load of electricity around the world. The thermos-economic analysis is an important tool for improving the performance of thermal steam power plants. In the present study, a thermo-economic analysis of a simple steam power plant for different boiler pressure was performed. The analysis comprises the energy, exergy, entropy, economics, and exergy-economic of a simple cycle steam power plant for different boiler pressure. The analysis was performed for a simple steam power plant with the constant output power of 10 MW and the boiler pressure is varied from 10 bar to 100 bar by a step of 10 bar. For each boiler pressure and constant output power, firstly, the fuel mass flow rate, steam flow rate, energy and exergy efficiency, and cost of electricity were calculated. Secondly, entropy generation, exergy destruction, and exergy efficiency for each component were calculated. Finally, exergy destruction economics for each component of the plant was performed. The results reveal that increasing the boiler pressure from (10 to 100 bar) for constant output power reduces the cost of electricity from (0.135 to 0.1025 $/kWh) due to a decrease in the fuel mass flow rate and an improvement in the thermal cycle and exergy efficiency. Also, when the boiler pressure increases, the exergy destruction for the pump increases, the exergy destruction for the boiler decreases, the exergy destruction for the turbine increases, and the exergy destruction for the condenser decrease.","PeriodicalId":150774,"journal":{"name":"Basrah journal for engineering science","volume":"726 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah journal for engineering science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33971/bjes.23.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal steam power plants represent the most important and dependable type for supplying the base load of electricity around the world. The thermos-economic analysis is an important tool for improving the performance of thermal steam power plants. In the present study, a thermo-economic analysis of a simple steam power plant for different boiler pressure was performed. The analysis comprises the energy, exergy, entropy, economics, and exergy-economic of a simple cycle steam power plant for different boiler pressure. The analysis was performed for a simple steam power plant with the constant output power of 10 MW and the boiler pressure is varied from 10 bar to 100 bar by a step of 10 bar. For each boiler pressure and constant output power, firstly, the fuel mass flow rate, steam flow rate, energy and exergy efficiency, and cost of electricity were calculated. Secondly, entropy generation, exergy destruction, and exergy efficiency for each component were calculated. Finally, exergy destruction economics for each component of the plant was performed. The results reveal that increasing the boiler pressure from (10 to 100 bar) for constant output power reduces the cost of electricity from (0.135 to 0.1025 $/kWh) due to a decrease in the fuel mass flow rate and an improvement in the thermal cycle and exergy efficiency. Also, when the boiler pressure increases, the exergy destruction for the pump increases, the exergy destruction for the boiler decreases, the exergy destruction for the turbine increases, and the exergy destruction for the condenser decrease.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单循环蒸汽电厂热经济性分析
火力蒸汽发电厂是世界上最重要和最可靠的电力供应类型。热经济分析是提高热电厂性能的重要手段。在本研究中,对一个简单的蒸汽发电厂进行了不同锅炉压力下的热经济分析。分析了某简单循环蒸汽电厂在不同锅炉压力下的能量、火用、熵、经济性和火用经济性。以一个简单的蒸汽发电厂为例进行了分析,该电厂的恒定输出功率为10mw,锅炉压力从10bar到100bar逐级变化10bar。在各锅炉压力和输出功率不变的情况下,首先计算燃料质量流量、蒸汽流量、能量和火用效率以及电力成本。其次,计算各分量的熵产、火用破坏和火用效率;最后,对电厂各组成部分进行了耗能经济性分析。结果表明,在输出功率恒定的情况下,将锅炉压力从10 bar提高到100 bar,由于燃料质量流量的降低和热循环和火用效率的提高,电力成本从0.135美元/千瓦时降低到0.1025美元/千瓦时。当锅炉压力增大时,泵的火用破坏增大,锅炉的火用破坏减小,汽轮机的火用破坏增大,冷凝器的火用破坏减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impact of Façade Design on Visual Pollution Case study: Peshawa-Qazi Street (100 m) in Erbil A Review of Intelligent Techniques Based Speed Control of Brushless DC Motor (BLDC) Design and Implementation of Smart Petrol Station A Numerical Study of Blade Geometry Effects in a Vertical-Axes Wind Turbines Review on Energy Harvesting from Wind-Induced Column Vibrations: Theories, Mechanisms, and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1