Scanning Radar Scene Reconstruction With Deep Unfolded ISTA Neural Network

Juezhu Lai, D. Yuan, Jifang Pei, Deqing Mao, Yin Zhang, Xingyu Tuo, Yulin Huang
{"title":"Scanning Radar Scene Reconstruction With Deep Unfolded ISTA Neural Network","authors":"Juezhu Lai, D. Yuan, Jifang Pei, Deqing Mao, Yin Zhang, Xingyu Tuo, Yulin Huang","doi":"10.1109/RadarConf2351548.2023.10149792","DOIUrl":null,"url":null,"abstract":"Complex scene reconstruction is one of the most critical issues in scanning radar processing. The azimuth echo of the scanning radar can be equivalent to the convolution result of the scene scattering coefficient and the antenna pattern. Iter-ative shrinkage-thresholding algorithm (ISTA) has been proven effective in the target reconstruction of the scanning radar, but it often performs unsatisfactory reconstruction quality on complex scenes. This paper proposes a new learning-based approach, an improved ISTA-based deep unfolding network, to reconstruct the scene information from the scanning radar echoes. Unlike the traditional analysis-based method, we established a deep unfolded scene reconstruction network based on the structure of ISTA. This network can learn the optimal network parameters through the input radar data, which avoids the manual selection of parameters in the traditional method. Besides, we apply a loss function to ensure the effectiveness of the sparse transformation so that the method can recover target information from scanning radar echoes in various complex scenes. Extensive experiments demonstrate that this method can highly improve scene reconstruction performance.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complex scene reconstruction is one of the most critical issues in scanning radar processing. The azimuth echo of the scanning radar can be equivalent to the convolution result of the scene scattering coefficient and the antenna pattern. Iter-ative shrinkage-thresholding algorithm (ISTA) has been proven effective in the target reconstruction of the scanning radar, but it often performs unsatisfactory reconstruction quality on complex scenes. This paper proposes a new learning-based approach, an improved ISTA-based deep unfolding network, to reconstruct the scene information from the scanning radar echoes. Unlike the traditional analysis-based method, we established a deep unfolded scene reconstruction network based on the structure of ISTA. This network can learn the optimal network parameters through the input radar data, which avoids the manual selection of parameters in the traditional method. Besides, we apply a loss function to ensure the effectiveness of the sparse transformation so that the method can recover target information from scanning radar echoes in various complex scenes. Extensive experiments demonstrate that this method can highly improve scene reconstruction performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度展开ISTA神经网络的扫描雷达场景重建
复杂场景重建是扫描雷达处理中的关键问题之一。扫描雷达的方位回波可以等效为场景散射系数与天线方向图的卷积结果。迭代收缩阈值算法(ISTA)在扫描雷达目标重建中已被证明是有效的,但在复杂场景下,其重建质量往往不理想。本文提出了一种新的基于学习的方法——改进的基于ista的深度展开网络,从扫描雷达回波中重构场景信息。与传统的基于分析的方法不同,我们建立了一个基于ISTA结构的深度展开场景重建网络。该网络可以通过输入的雷达数据学习到最优的网络参数,避免了传统方法中手动选择参数的问题。此外,为了保证稀疏变换的有效性,我们引入了损失函数,使该方法能够在各种复杂场景下从扫描雷达回波中恢复目标信息。大量的实验表明,该方法可以大大提高场景重建的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority-based Task Scheduling in Dynamic Environments for Cognitive MFR via Transfer DRL An Application of Artificial Intelligence to Adaptive Radar Detection Using Raw Data mm-Wave wireless radar network for early detection of Parkinson's Disease by gait analysis Correlation Coefficient vs. Transmit Power for an Experimental Noise Radar Analysis of Keller Cones for RF Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1