Lisbon Landmark Lenslet Light Field Dataset: Description and Retrieval Performance

J. A. Teixeira, Catarina Brites, F. Pereira, J. Ascenso
{"title":"Lisbon Landmark Lenslet Light Field Dataset: Description and Retrieval Performance","authors":"J. A. Teixeira, Catarina Brites, F. Pereira, J. Ascenso","doi":"10.1145/3095713.3095723","DOIUrl":null,"url":null,"abstract":"Popular local feature extraction schemes, such as SIFT, are robust when changes in illumination, translation and scale occur, and play an important role in visual content retrieval. However, these solutions are not very robust to 3D object rotations and camera viewpoint changes. In such scenarios, the emerging and richer lenslet light field image representation can provide additional information such as multiple perspectives and depth data. This paper introduces a new lenslet light field imaging dataset and studies the retrieval performance when popular 2D visual descriptors are applied. The new dataset consists of 25 Lisbon landmarks captured with a lenslet camera from different perspectives. Moreover, this paper proposes and assesses straightforward extensions of visual 2D descriptor matching for lenslet light field retrieval. The experimental results show that gains up to 14% can be obtained with a light field representation when compared to a 2D imaging conventional representation.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Popular local feature extraction schemes, such as SIFT, are robust when changes in illumination, translation and scale occur, and play an important role in visual content retrieval. However, these solutions are not very robust to 3D object rotations and camera viewpoint changes. In such scenarios, the emerging and richer lenslet light field image representation can provide additional information such as multiple perspectives and depth data. This paper introduces a new lenslet light field imaging dataset and studies the retrieval performance when popular 2D visual descriptors are applied. The new dataset consists of 25 Lisbon landmarks captured with a lenslet camera from different perspectives. Moreover, this paper proposes and assesses straightforward extensions of visual 2D descriptor matching for lenslet light field retrieval. The experimental results show that gains up to 14% can be obtained with a light field representation when compared to a 2D imaging conventional representation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
里斯本Landmark Lenslet光场数据集:描述与检索性能
当前流行的局部特征提取方法,如SIFT,在光照、平移和尺度发生变化时具有较强的鲁棒性,在视觉内容检索中发挥着重要作用。然而,这些解决方案对3D对象旋转和相机视点变化不是很健壮。在这种情况下,新兴和更丰富的透镜光场图像表示可以提供额外的信息,如多视角和深度数据。本文介绍了一种新的小透镜光场成像数据集,并研究了使用常用的二维视觉描述符时的检索性能。新的数据集由25个里斯本地标组成,这些地标是用透镜相机从不同角度拍摄的。此外,本文提出并评估了用于小透镜光场检索的可视化二维描述子匹配的直接扩展。实验结果表明,与传统的二维成像表示相比,光场表示可获得高达14%的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tag Propagation Approaches within Speaking Face Graphs for Multimodal Person Discovery A free Web API for single and multi-document summarization Visualizing weakly-Annotated Multi-label Mayan Inscriptions with Supervised t-SNE Prediction of User Demographics from Music Listening Habits Detecting adversarial example attacks to deep neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1