Incremental Domain Adaptation for Neural Machine Translation in Low-Resource Settings

M. Kalimuthu, Michael Barz, Daniel Sonntag
{"title":"Incremental Domain Adaptation for Neural Machine Translation in Low-Resource Settings","authors":"M. Kalimuthu, Michael Barz, Daniel Sonntag","doi":"10.18653/v1/W19-4601","DOIUrl":null,"url":null,"abstract":"We study the problem of incremental domain adaptation of a generic neural machine translation model with limited resources (e.g., budget and time) for human translations or model training. In this paper, we propose a novel query strategy for selecting “unlabeled” samples from a new domain based on sentence embeddings for Arabic. We accelerate the fine-tuning process of the generic model to the target domain. Specifically, our approach estimates the informativeness of instances from the target domain by comparing the distance of their sentence embeddings to embeddings from the generic domain. We perform machine translation experiments (Ar-to-En direction) for comparing a random sampling baseline with our new approach, similar to active learning, using two small update sets for simulating the work of human translators. For the prescribed setting we can save more than 50% of the annotation costs without loss in quality, demonstrating the effectiveness of our approach.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study the problem of incremental domain adaptation of a generic neural machine translation model with limited resources (e.g., budget and time) for human translations or model training. In this paper, we propose a novel query strategy for selecting “unlabeled” samples from a new domain based on sentence embeddings for Arabic. We accelerate the fine-tuning process of the generic model to the target domain. Specifically, our approach estimates the informativeness of instances from the target domain by comparing the distance of their sentence embeddings to embeddings from the generic domain. We perform machine translation experiments (Ar-to-En direction) for comparing a random sampling baseline with our new approach, similar to active learning, using two small update sets for simulating the work of human translators. For the prescribed setting we can save more than 50% of the annotation costs without loss in quality, demonstrating the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低资源环境下神经机器翻译的增量域自适应
我们研究了在有限资源(如预算和时间)的情况下,用于人工翻译或模型训练的通用神经机器翻译模型的增量域自适应问题。在本文中,我们提出了一种新的基于阿拉伯语句子嵌入的查询策略,用于从一个新的领域中选择“未标记”的样本。我们加速了通用模型对目标域的微调过程。具体来说,我们的方法通过比较句子嵌入与通用领域嵌入的距离来估计目标领域实例的信息量。我们进行了机器翻译实验(Ar-to-En方向),将随机抽样基线与我们的新方法(类似于主动学习)进行比较,使用两个小的更新集来模拟人类翻译的工作。对于规定的设置,我们可以节省50%以上的注释成本而不损失质量,证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Morphology-aware Word-Segmentation in Dialectal Arabic Adaptation of Neural Machine Translation Arabic Tweet-Act: Speech Act Recognition for Arabic Asynchronous Conversations En-Ar Bilingual Word Embeddings without Word Alignment: Factors Effects Simple But Not Naïve: Fine-Grained Arabic Dialect Identification Using Only N-Grams The SMarT Classifier for Arabic Fine-Grained Dialect Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1