Sensitivity analysis of latent variables in Variational Autoencoders for Dermoscopic Image Analysis

P. Casti, A. Mencattini, Sara Cardarelli, G. Antonelli, J. Filippi, M. D’Orazio, E. Martinelli
{"title":"Sensitivity analysis of latent variables in Variational Autoencoders for Dermoscopic Image Analysis","authors":"P. Casti, A. Mencattini, Sara Cardarelli, G. Antonelli, J. Filippi, M. D’Orazio, E. Martinelli","doi":"10.1109/MeMeA54994.2022.9856459","DOIUrl":null,"url":null,"abstract":"The advances in the deep learning field have paved the way to novel strategies to represent digital image data in the form of synthetic descriptors. Variational Auto-Encoders (VAE) architectures are generative powerful tools not only to reconstruct input images but also to extract meaningful information for the task of pattern classification. The first part of the VAE network, called encoder, aims to condense the image information into a reduced set of low-level descriptors, called latent variables. The second part, called decoder, aims to use the latent variable in a reverse process that reconstructs the original image in output. In this work, we exploited the VAE-based latent representation of colour normalized dermoscopic images for the discrimination of malignant and benign skin lesions. In particular, we investigated the sensitivity to the effect of skin colour variations over the final reconstruction error and on the discrimination capability of the VAE latent variables in terms of individual Area Under the roC curve (AUC). By exploiting and adapting state-of-the art skin colour variation models we obtained a performance worsening of about 10% either in the reconstruction error and in the discrimination capability of the latent variables. The achieved preliminary results demonstrate that, with suitable VAE adaptation, latent descriptors could be used in automatic skin lesions classification frameworks.","PeriodicalId":106228,"journal":{"name":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA54994.2022.9856459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The advances in the deep learning field have paved the way to novel strategies to represent digital image data in the form of synthetic descriptors. Variational Auto-Encoders (VAE) architectures are generative powerful tools not only to reconstruct input images but also to extract meaningful information for the task of pattern classification. The first part of the VAE network, called encoder, aims to condense the image information into a reduced set of low-level descriptors, called latent variables. The second part, called decoder, aims to use the latent variable in a reverse process that reconstructs the original image in output. In this work, we exploited the VAE-based latent representation of colour normalized dermoscopic images for the discrimination of malignant and benign skin lesions. In particular, we investigated the sensitivity to the effect of skin colour variations over the final reconstruction error and on the discrimination capability of the VAE latent variables in terms of individual Area Under the roC curve (AUC). By exploiting and adapting state-of-the art skin colour variation models we obtained a performance worsening of about 10% either in the reconstruction error and in the discrimination capability of the latent variables. The achieved preliminary results demonstrate that, with suitable VAE adaptation, latent descriptors could be used in automatic skin lesions classification frameworks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮肤镜图像分析变分自编码器中潜在变量的敏感性分析
深度学习领域的进步为以合成描述符的形式表示数字图像数据的新策略铺平了道路。变分自编码器(VAE)体系结构是生成功能强大的工具,它不仅可以重构输入图像,还可以为模式分类任务提取有意义的信息。VAE网络的第一部分称为编码器,旨在将图像信息压缩成一组简化的低级描述符,称为潜在变量。第二部分称为解码器,目的是在反向过程中使用潜在变量重建输出的原始图像。在这项工作中,我们利用基于vae的颜色归一化皮肤镜图像的潜在表征来区分恶性和良性皮肤病变。特别是,我们研究了肤色变化对最终重建误差影响的敏感性,以及就个体roC曲线下面积(AUC)而言,VAE潜在变量的识别能力。通过开发和适应最先进的肤色变化模型,我们在重建误差和潜在变量的识别能力方面都获得了约10%的性能恶化。初步结果表明,通过适当的VAE适应,潜在描述符可以用于皮肤病变自动分类框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time and Frequency domain analysis of APB muscles Abduction in adult dominant hand using surface electromyography signals Comparison of Noise Reduction Techniques for Dysarthric Speech Recognition Effects of ROI positioning on the measurement of engineered muscle tissue contractility with an optical tracking method Atrial Fibrillation Detection by Means of Edge Computing on Wearable Device: A Feasibility Assessment Unraveling the biological meaning of radiomic features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1