Feature selection based on popularity and value contrast for Android malware classification

Le Duc Thuan, Pham Van Huong, H. Hiep, Nguyen Kim Khanh
{"title":"Feature selection based on popularity and value contrast for Android malware classification","authors":"Le Duc Thuan, Pham Van Huong, H. Hiep, Nguyen Kim Khanh","doi":"10.1109/KSE56063.2022.9953762","DOIUrl":null,"url":null,"abstract":"This study proposes a new approach for feature selection in the Android malware detection problem based on the popularity and contrast in a multi-target approach. The popularity of a feature is built on the frequency of each feature in the sample set. The contrast of features consists of two types: a contrast between malware and benign, and a contrast among malware classes. Obviously, the greater the contrast between classes of a feature, the higher the ability to classify based on this feature. There is a trade-off between the popularity and contrast of features, i.e., as popularity increases, contrast may decrease and vice versa. Therefore, to evaluate the global value of each feature, we use the global evaluation function (global measurement) according to the Pareto multi-objective approach. To evaluate the feature selection method, the selected feature is fed into a convolutional neural network (CNN) model, and test the model on a popular Android malware dataset, the AMD dataset. When we removed 1,000 features (500 permission features and 500 API features) accuracy decreased by 0.42%, and recall increased by 0.08%.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a new approach for feature selection in the Android malware detection problem based on the popularity and contrast in a multi-target approach. The popularity of a feature is built on the frequency of each feature in the sample set. The contrast of features consists of two types: a contrast between malware and benign, and a contrast among malware classes. Obviously, the greater the contrast between classes of a feature, the higher the ability to classify based on this feature. There is a trade-off between the popularity and contrast of features, i.e., as popularity increases, contrast may decrease and vice versa. Therefore, to evaluate the global value of each feature, we use the global evaluation function (global measurement) according to the Pareto multi-objective approach. To evaluate the feature selection method, the selected feature is fed into a convolutional neural network (CNN) model, and test the model on a popular Android malware dataset, the AMD dataset. When we removed 1,000 features (500 permission features and 500 API features) accuracy decreased by 0.42%, and recall increased by 0.08%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于流行度和值对比的特征选择,用于Android恶意软件分类
本研究提出了一种基于多目标流行度和对比度的Android恶意软件检测问题特征选择的新方法。特征的受欢迎程度建立在样本集中每个特征的频率上。特征的对比包括两种类型:恶意软件与良性软件的对比和恶意软件类之间的对比。显然,一个特征的类别之间的对比越大,基于该特征进行分类的能力就越高。在特征的受欢迎程度和对比度之间存在一种权衡,即随着受欢迎程度的增加,对比度可能会降低,反之亦然。因此,为了评估每个特征的全局值,我们根据Pareto多目标方法使用全局评价函数(全局度量)。为了评估特征选择方法,将选择的特征输入到卷积神经网络(CNN)模型中,并在流行的Android恶意软件数据集AMD数据集上测试该模型。当我们删除1000个特征(500个权限特征和500个API特征)时,准确率下降了0.42%,召回率增加了0.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWEN: A novel method for accurate estimation of cell type compositions from bulk data samples Polygenic risk scores adaptation for Height in a Vietnamese population Sentiment Classification for Beauty-fashion Reviews An Automated Stub Method for Unit Testing C/C++ Projects Knowledge-based Problem Solving and Reasoning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1