Predictive model for the horizontal displacement of a dam using autoregressive neural network

G. Oltean, L. Ivanciu, M. Gordan, I. Stoian, I. Kovacs
{"title":"Predictive model for the horizontal displacement of a dam using autoregressive neural network","authors":"G. Oltean, L. Ivanciu, M. Gordan, I. Stoian, I. Kovacs","doi":"10.1109/INES.2017.8118576","DOIUrl":null,"url":null,"abstract":"The interpretation of data gathered from dam monitoring directly influences the detection of abnormal behaviors. Using previously recorded data, predictive models can be developed, so that the signs of a possible failure are detected as early as possible. The paper presents a multi-step ahead predictive model to generate the values for the horizontal displacement of a dam, using previous values of the displacement, water level and temperature. The model is based on an autoregressive neural network that was trained and tested using historical data. The results show a good prediction accuracy (maximum 2.63% relative errors), especially for up to 8 months ahead prediction).","PeriodicalId":344933,"journal":{"name":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2017.8118576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interpretation of data gathered from dam monitoring directly influences the detection of abnormal behaviors. Using previously recorded data, predictive models can be developed, so that the signs of a possible failure are detected as early as possible. The paper presents a multi-step ahead predictive model to generate the values for the horizontal displacement of a dam, using previous values of the displacement, water level and temperature. The model is based on an autoregressive neural network that was trained and tested using historical data. The results show a good prediction accuracy (maximum 2.63% relative errors), especially for up to 8 months ahead prediction).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自回归神经网络的大坝水平位移预测模型
对大坝监测数据的解释直接影响异常行为的检测。利用先前记录的数据,可以开发预测模型,以便尽早发现可能出现的故障迹象。本文提出了一种多步超前预测模型,利用大坝的位移、水位和温度的先验值来生成大坝的水平位移值。该模型基于自回归神经网络,该神经网络使用历史数据进行训练和测试。结果表明,预测精度较高(相对误差最大2.63%),特别是对8个月以内的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-based optimal control method for cancer treatment using model predictive control and robust fixed point method Nonlinear identification of glucose absorption related to Diabetes Mellitus Retrieval of important concepts from generalized one-sided concept lattice Cross-correlation based clustering and dimension reduction of multivariate time series Quality and performance evaluation of the algorithms KMART and FCM for fuzzy clustering and categorization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1