A fast QR/Frequency-domain RLS adaptive filter

J. Cioffi
{"title":"A fast QR/Frequency-domain RLS adaptive filter","authors":"J. Cioffi","doi":"10.1109/ICASSP.1987.1169610","DOIUrl":null,"url":null,"abstract":"There has been considerable recent interest in QR factorization for recursive solution to the least-squares adaptive-filtering problem, mainly because of the good numerical properties of QR factorizations. Early work by Gentleman and Kung (1981) and McWhirter (1983) has produced triangular systolic arrays of N2/2 processors that solve the Recursive Least Squares (RLS) adaptive-filtering problem (where N is the size of the adaptive filter). Here, we introduce a more computationally efficient solution to the QR RLS problem that requires only O(N) computations per time update, when the input has the usual shift-invariant property. Thus, computation and implementation requirements are reduced by an order of magnitude. The new algorithms are based on a structure that is neither a transversal filter nor a lattice, but can be best characterized by a functionally equivalent set of parameters that represent the time-varying \"least-squares frequency transforms\" of the input sequences. Numerical stability can be insured by implementing computations as 2 × 2 orthogonal (Givens) rotations.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

There has been considerable recent interest in QR factorization for recursive solution to the least-squares adaptive-filtering problem, mainly because of the good numerical properties of QR factorizations. Early work by Gentleman and Kung (1981) and McWhirter (1983) has produced triangular systolic arrays of N2/2 processors that solve the Recursive Least Squares (RLS) adaptive-filtering problem (where N is the size of the adaptive filter). Here, we introduce a more computationally efficient solution to the QR RLS problem that requires only O(N) computations per time update, when the input has the usual shift-invariant property. Thus, computation and implementation requirements are reduced by an order of magnitude. The new algorithms are based on a structure that is neither a transversal filter nor a lattice, but can be best characterized by a functionally equivalent set of parameters that represent the time-varying "least-squares frequency transforms" of the input sequences. Numerical stability can be insured by implementing computations as 2 × 2 orthogonal (Givens) rotations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种快速QR/频域RLS自适应滤波器
近年来,由于QR分解具有良好的数值性质,人们对最小二乘自适应滤波问题递归解的QR分解产生了相当大的兴趣。Gentleman和Kung(1981)以及McWhirter(1983)的早期工作已经产生了N2/2处理器的三角形收缩阵列,解决了递归最小二乘(RLS)自适应滤波问题(其中N是自适应滤波器的大小)。在这里,我们引入了一个计算效率更高的QR RLS问题的解决方案,当输入具有通常的移位不变性时,每次更新只需要O(N)次计算。因此,计算和实现需求减少了一个数量级。新算法基于一种结构,既不是横向滤波器也不是晶格,但可以用一组功能等效的参数来最好地表征,这些参数表示输入序列的时变“最小二乘频率变换”。数值稳定性可以通过实现2 × 2正交(给定)旋转的计算来保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1