A comparison of outlier detection methods: exemplified with an environmental geochemical dataset

C. Zhang, P. M. Wong, O. Selinus
{"title":"A comparison of outlier detection methods: exemplified with an environmental geochemical dataset","authors":"C. Zhang, P. M. Wong, O. Selinus","doi":"10.1109/ICONIP.1999.843983","DOIUrl":null,"url":null,"abstract":"Three outlier detection methods of range, principle component analysis (PCA), and autoassociation neural network (AutoNN) approaches are introduced and applied to an environmental geochemical dataset in Sweden. Each method uses a different criterion for the definition of outlier. In the range method, the number of outlying values of one sample is determined as the outlying sample measurement parameter. The distance of sample scores in the principal components from the coordinate origin is suggested as the parameter for the PCA method. The total sum of error squares between the measured and predicted values is proposed as the parameter for the AutoNN approach. The results of the three methods are comparable, but differences exist. A combination of all the methods is recommended for the development of a better outlier identifier, and further analyses on the detected outliers should be carried out by integrating geological and environmental information.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.843983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Three outlier detection methods of range, principle component analysis (PCA), and autoassociation neural network (AutoNN) approaches are introduced and applied to an environmental geochemical dataset in Sweden. Each method uses a different criterion for the definition of outlier. In the range method, the number of outlying values of one sample is determined as the outlying sample measurement parameter. The distance of sample scores in the principal components from the coordinate origin is suggested as the parameter for the PCA method. The total sum of error squares between the measured and predicted values is proposed as the parameter for the AutoNN approach. The results of the three methods are comparable, but differences exist. A combination of all the methods is recommended for the development of a better outlier identifier, and further analyses on the detected outliers should be carried out by integrating geological and environmental information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异常值检测方法的比较:以环境地球化学数据集为例
介绍了极差、主成分分析(PCA)和自关联神经网络(AutoNN)三种异常值检测方法,并将其应用于瑞典环境地球化学数据集。每种方法使用不同的标准来定义离群值。在极差法中,确定一个样本的离群值的个数作为离群样本测量参数。建议将主成分样本分数与坐标原点的距离作为主成分分析方法的参数。提出了将实测值与预测值之间的误差平方和作为AutoNN方法的参数。三种方法的结果具有可比性,但也存在差异。建议将所有方法结合起来开发更好的离群点识别,并通过综合地质和环境信息对检测到的离群点进行进一步分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1