{"title":"Formal model construction using HDL simulation semantics","authors":"J. Buck, Dong Wang, Yunshan Zhu","doi":"10.1109/HLDVT.2007.4392797","DOIUrl":null,"url":null,"abstract":"All formal hardware verification tools in the market today interpret hardware description languages (HDLs) based on their synthesis semantics. This limits formal verification to synthesizable designs. The result, either a proof or a counterexample, produced by a formal tool can be inconsistent with simulation due to synthesis and simulation mismatches. And finally, conversion from a synthesized gate-level circuit to a formal model such as a Kripke structure or a Mealy machine is complex for designs containing gated clocks or latches. Existing solutions are often based on heuristics rather than language semantics. In this paper, we propose a new approach that constructs formal models based on simulation semantics. We symbolically simulate HDL designs using non-canonical word-level expressions to represent the values of design signals. We show that the formal model is consistent with simulation at specified sample points, which can be chosen to represent a clock cycle or a transaction. Our approach has been implemented in a tool called Simon. Experimental results show that Simon can efficiently construct formal models for large industrial designs.","PeriodicalId":339324,"journal":{"name":"2007 IEEE International High Level Design Validation and Test Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International High Level Design Validation and Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HLDVT.2007.4392797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
All formal hardware verification tools in the market today interpret hardware description languages (HDLs) based on their synthesis semantics. This limits formal verification to synthesizable designs. The result, either a proof or a counterexample, produced by a formal tool can be inconsistent with simulation due to synthesis and simulation mismatches. And finally, conversion from a synthesized gate-level circuit to a formal model such as a Kripke structure or a Mealy machine is complex for designs containing gated clocks or latches. Existing solutions are often based on heuristics rather than language semantics. In this paper, we propose a new approach that constructs formal models based on simulation semantics. We symbolically simulate HDL designs using non-canonical word-level expressions to represent the values of design signals. We show that the formal model is consistent with simulation at specified sample points, which can be chosen to represent a clock cycle or a transaction. Our approach has been implemented in a tool called Simon. Experimental results show that Simon can efficiently construct formal models for large industrial designs.