Inferring user's search activity using interaction logs and gaze data

Johannes Schwerdt, Michael Kotzyba, A. Nürnberger
{"title":"Inferring user's search activity using interaction logs and gaze data","authors":"Johannes Schwerdt, Michael Kotzyba, A. Nürnberger","doi":"10.1109/COMPANION.2017.8287075","DOIUrl":null,"url":null,"abstract":"Providing an individual user support regarding the current search activity is crucial for adaptive information retrieval systems but requires a reliable identification of user activities. Such a reliable and robust classification would also help to characterize and analyze complex search behavior of users and enable us to build more advanced information-companion technologies that can support users individually in retrieving and organizing information. In order to develop classification models, in this paper we investigate the validity of interaction features and model structures. We provide a methodology for user models utilizing data from interaction logs and eye tracking to classify the two search activities exploratory search and multitasking search. To identify adequate models and features we use a statistical framework that enables us to select relevant parameters that are useful to understand the current search activity while holding discriminative properties between the activities. The model achieved a classification rate of 89.32%.","PeriodicalId":132735,"journal":{"name":"2017 International Conference on Companion Technology (ICCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Companion Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPANION.2017.8287075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Providing an individual user support regarding the current search activity is crucial for adaptive information retrieval systems but requires a reliable identification of user activities. Such a reliable and robust classification would also help to characterize and analyze complex search behavior of users and enable us to build more advanced information-companion technologies that can support users individually in retrieving and organizing information. In order to develop classification models, in this paper we investigate the validity of interaction features and model structures. We provide a methodology for user models utilizing data from interaction logs and eye tracking to classify the two search activities exploratory search and multitasking search. To identify adequate models and features we use a statistical framework that enables us to select relevant parameters that are useful to understand the current search activity while holding discriminative properties between the activities. The model achieved a classification rate of 89.32%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用交互日志和注视数据推断用户的搜索活动
为当前搜索活动提供单个用户支持对于自适应信息检索系统至关重要,但需要可靠地识别用户活动。这种可靠和健壮的分类还将有助于描述和分析用户的复杂搜索行为,并使我们能够构建更先进的信息伴侣技术,这些技术可以支持用户单独检索和组织信息。为了建立分类模型,本文研究了交互特征和模型结构的有效性。我们提供了一种利用交互日志和眼动追踪数据的用户模型方法,将探索性搜索和多任务搜索两种搜索活动分类。为了确定适当的模型和特征,我们使用一个统计框架,使我们能够选择相关的参数,这些参数有助于理解当前的搜索活动,同时保持活动之间的区别属性。该模型的分类率为89.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating manual annotation of filled pauses by automatic pre-selection Dialogues with IoT companions: Enabling human interaction with intelligent service items Adaptive dynamic network architectures for companion systems Sloth — The interactive workout planner Multimodal fusion including camera photoplethysmography for pain recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1