Stochastic Volatility Models with ARMA Innovations an Application to G7 Inflation Forecasts

Bo Zhang, J. Chan, Jamie L. Cross
{"title":"Stochastic Volatility Models with ARMA Innovations an Application to G7 Inflation Forecasts","authors":"Bo Zhang, J. Chan, Jamie L. Cross","doi":"10.2139/ssrn.3222423","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a new class of stochastic volatility models with autoregressive moving average (ARMA) innovations. The conditional mean process has a flexible form that can accommodate both a state space representation and a conventional dynamic regression. The ARMA component introduces serial dependence, which results in standard Kalman filter techniques not being directly applicable. To overcome this hurdle, we develop an efficient posterior simulator that builds on recently developed precision-based algorithms. We assess the usefulness of these new models in an inflation forecasting exercise across all G7 economies. We find that the new models generally provide competitive point and density forecasts compared to standard benchmarks, and are especially useful for Canada, France, Italy, and the U.S.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3222423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Abstract We introduce a new class of stochastic volatility models with autoregressive moving average (ARMA) innovations. The conditional mean process has a flexible form that can accommodate both a state space representation and a conventional dynamic regression. The ARMA component introduces serial dependence, which results in standard Kalman filter techniques not being directly applicable. To overcome this hurdle, we develop an efficient posterior simulator that builds on recently developed precision-based algorithms. We assess the usefulness of these new models in an inflation forecasting exercise across all G7 economies. We find that the new models generally provide competitive point and density forecasts compared to standard benchmarks, and are especially useful for Canada, France, Italy, and the U.S.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有ARMA创新的随机波动率模型在G7通胀预测中的应用
摘要本文提出了一类具有自回归移动平均(ARMA)创新的随机波动模型。条件平均过程具有灵活的形式,既可以适应状态空间表示,也可以适应传统的动态回归。ARMA分量引入了串行依赖,这导致标准卡尔曼滤波技术不能直接应用。为了克服这一障碍,我们开发了一个有效的后验模拟器,该模拟器建立在最近开发的基于精度的算法之上。我们评估了这些新模型在七国集团(G7)所有经济体通胀预测中的实用性。我们发现,与标准基准相比,新模型通常提供具有竞争力的点和密度预测,并且对加拿大,法国,意大利和美国特别有用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Returns Out of Sample: A Naïve Model Averaging Approach Forecasting with Deep Temporal Hierarchies Liquidity and Mispricing Charting By Machines Lawrence R. Klein’s Principles in Modeling and Contributions in Nowcasting, Real-Time Forecasting, and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1