Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm

Muzammal Majeed, Rashid Amin, Farrukh Shoukat Ali, Adeel Ahmed, Mudassar Hussain
{"title":"Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm","authors":"Muzammal Majeed, Rashid Amin, Farrukh Shoukat Ali, Adeel Ahmed, Mudassar Hussain","doi":"10.33411/ijist/2022040510","DOIUrl":null,"url":null,"abstract":"Link failure is still a severe problem in today's networking system. Transmission delays and data packet loss cause link failure in the network. Rapid connection recovery after a link breakdown is an important topic in networking. The failure of the networking link must be recovered whenever possible because it could cause blockage of network traffic and obstruct normal network operation. To overcome this difficulty, backup or secondary channels can be chosen adaptively and proactively in SDN based on data traffic dynamics in the network. When a network connection fails, packets must find a different way to their destination. The goal of this research is to find an alternative way. Our proposed methodology uses a machine-learning algorithm called Linear Regression to uncover alternative network paths. To provide for speedy failure recovery, the controller communicates this alternate path to the network switches ahead of time. We train, test, and validate the learning model using a machine learning approach. To simulate our proposed technique and locate the trials, we use the Mini net network simulator. The simulation results show that our suggested approach recovers link failure most effectively compared to existing solutions.","PeriodicalId":298526,"journal":{"name":"Vol 4 Issue 5","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vol 4 Issue 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33411/ijist/2022040510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Link failure is still a severe problem in today's networking system. Transmission delays and data packet loss cause link failure in the network. Rapid connection recovery after a link breakdown is an important topic in networking. The failure of the networking link must be recovered whenever possible because it could cause blockage of network traffic and obstruct normal network operation. To overcome this difficulty, backup or secondary channels can be chosen adaptively and proactively in SDN based on data traffic dynamics in the network. When a network connection fails, packets must find a different way to their destination. The goal of this research is to find an alternative way. Our proposed methodology uses a machine-learning algorithm called Linear Regression to uncover alternative network paths. To provide for speedy failure recovery, the controller communicates this alternate path to the network switches ahead of time. We train, test, and validate the learning model using a machine learning approach. To simulate our proposed technique and locate the trials, we use the Mini net network simulator. The simulation results show that our suggested approach recovers link failure most effectively compared to existing solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习算法的软件定义网络可靠性感知多路径安装
在当今的网络系统中,链路故障仍然是一个严重的问题。传输延迟和数据包丢失会导致网络链路故障。链路故障后的快速恢复是网络中的一个重要课题。如果网络链路出现故障,可能会造成网络流量阻塞,影响网络的正常运行,因此必须尽快恢复。为了克服这一困难,SDN可以根据网络中的数据流量动态,自适应地主动选择备份通道或辅助通道。当网络连接失败时,数据包必须找到另一条到达目的地的路径。这项研究的目的是找到一种替代方法。我们提出的方法使用一种称为线性回归的机器学习算法来发现可选择的网络路径。为了提供快速的故障恢复,控制器将这条备用路径提前传递给网络交换机。我们使用机器学习方法训练、测试和验证学习模型。为了模拟我们提出的技术并定位试验,我们使用了Mini net网络模拟器。仿真结果表明,与现有的解决方案相比,我们提出的方法能最有效地恢复链路故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm Sun Tracking and Control Design for PV Solar energy system Review on Performance Analysis of Three Control Techniques for Buck Converter feeding a Resistive Load Double Auction used Artificial Neural Network in Cloud Computing Critical Review of Blockchain Consensus Algorithms: challenges and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1