TENSILE TESTING OF ALSIC COMPOSITE MATERIALS AND ITS VALIDATION USING ANSYS

B. K. Mathur, Prashanth Kumar
{"title":"TENSILE TESTING OF ALSIC COMPOSITE MATERIALS AND ITS VALIDATION USING ANSYS","authors":"B. K. Mathur, Prashanth Kumar","doi":"10.30780/specialissue-icrdet-2021/009","DOIUrl":null,"url":null,"abstract":"- Aluminium Silicon Carbide (AlSiC) composite materials are used in the electronics industries and other manufacturing companies hence, manufacturing of AlSiC composite materials with the right properties for different applications are vital to most industries. The challenge of testing the same specimens for different properties remains, because most of the tests carried out are destructive. Hence, the use of ANSYS finite element simulation software for the design and analysis of a flat bar specimen. Loads between 3 kN to 21 kN were applied on the specimen since it is within the operating limit of a Universal Tensile Testing Machine (UTTM), while both ends are fixed. The AlSiC composite materials used in this study have a composition of 63 vol% Al (356.2) and 37 vol% SiC and, the results showed that stress was directly proportional to strain. While the calculated Young’s modulus from the stress versus strain plot was approximately 167 GPa for the different tensile loads applied. In addition, the total deformation of the AlSiC composite material increased as the load was increased. Also, the highest deformation of the material was observed around the centre of the test specimen. This is synonymous with the failure observed in practical testing of specimens.","PeriodicalId":302312,"journal":{"name":"International Journal of Technical Research & Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technical Research & Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30780/specialissue-icrdet-2021/009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

- Aluminium Silicon Carbide (AlSiC) composite materials are used in the electronics industries and other manufacturing companies hence, manufacturing of AlSiC composite materials with the right properties for different applications are vital to most industries. The challenge of testing the same specimens for different properties remains, because most of the tests carried out are destructive. Hence, the use of ANSYS finite element simulation software for the design and analysis of a flat bar specimen. Loads between 3 kN to 21 kN were applied on the specimen since it is within the operating limit of a Universal Tensile Testing Machine (UTTM), while both ends are fixed. The AlSiC composite materials used in this study have a composition of 63 vol% Al (356.2) and 37 vol% SiC and, the results showed that stress was directly proportional to strain. While the calculated Young’s modulus from the stress versus strain plot was approximately 167 GPa for the different tensile loads applied. In addition, the total deformation of the AlSiC composite material increased as the load was increased. Also, the highest deformation of the material was observed around the centre of the test specimen. This is synonymous with the failure observed in practical testing of specimens.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
alsic复合材料的拉伸试验及其ansys验证
-铝碳化硅(AlSiC)复合材料用于电子工业和其他制造公司,因此,制造具有不同应用的正确性能的AlSiC复合材料对大多数工业至关重要。由于所进行的大多数试验都是破坏性的,因此对同一试样进行不同性质试验的挑战仍然存在。因此,利用ANSYS有限元仿真软件对某扁杆试件进行设计分析。由于在万能拉力试验机(UTTM)的工作极限内,在两端固定的情况下,对试样施加了3kn至21kn的载荷。本研究中使用的AlSiC复合材料的组成为63 vol% Al(356.2)和37 vol% SiC,结果表明应力与应变成正比。而从应力应变图中计算出的杨氏模量在施加不同拉伸载荷时约为167 GPa。此外,AlSiC复合材料的总变形随载荷的增加而增加。此外,在试件的中心周围观察到材料的最大变形。这与实际试样试验中观察到的失效是同义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PERFORMANCE ANALYSIS OF A NOVEL PORTABLE SOLAR HYBRID VC REFRIGERATION SYSTEM SOLAR ASSISTED REFRIGERATING E-RICKSHAW SYSTEM USED FOR STREET VENDORS EXAM CELL AUTOMATION SYSTEM AND RESULT ANALYSIS GREY WOLF OPTIMIZATION TUNED TID AND I-TD CONTROLLERS FOR TRAJECTORY TRACKING OF DYNAMICAL AERIAL SYSTEM GLOBAL TRENDS AND PROSPECTS IN POLYURETHANE BASED COMPOSITE WITH CARBON FIBER: A BIBLIOMETRIC ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1