Katherine Cortés, R. Reeves, M. Figueroa, P. Kangaslahti, Wagner Ramírez, Lilian Mora, Pablo Cartes, D. Arroyo, G. Burgos, Brian Molina
{"title":"A Pseudo-Correlation MMIC-based 183 GHz Water Vapor Radiometer","authors":"Katherine Cortés, R. Reeves, M. Figueroa, P. Kangaslahti, Wagner Ramírez, Lilian Mora, Pablo Cartes, D. Arroyo, G. Burgos, Brian Molina","doi":"10.1109/GSMM.2018.8439550","DOIUrl":null,"url":null,"abstract":"In this work, we describe the design, development and status of implementation of a Water Vapor Radiometer (WVR) at 183 GHz. The architecture of the instrument is based on a pseudo-correlation radiometer with analog sideband separation and includes 1/f mitigation by phase-switching the local oscillator (LO) signal. The improved sensitivity of the development comes from the use of high performance Monolithic Microwave Integrated Circuits (MMIC) chips instead of the typical Schottky diode mixers at the input. We forecast sensitivity per sub-band of 170 mK, at an output instrument rate of 1 Hz.","PeriodicalId":441407,"journal":{"name":"2018 11th Global Symposium on Millimeter Waves (GSMM)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Global Symposium on Millimeter Waves (GSMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSMM.2018.8439550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, we describe the design, development and status of implementation of a Water Vapor Radiometer (WVR) at 183 GHz. The architecture of the instrument is based on a pseudo-correlation radiometer with analog sideband separation and includes 1/f mitigation by phase-switching the local oscillator (LO) signal. The improved sensitivity of the development comes from the use of high performance Monolithic Microwave Integrated Circuits (MMIC) chips instead of the typical Schottky diode mixers at the input. We forecast sensitivity per sub-band of 170 mK, at an output instrument rate of 1 Hz.