Designing a social-broadcasting-based business intelligence system

Huaxia Rui, Andrew Whinston
{"title":"Designing a social-broadcasting-based business intelligence system","authors":"Huaxia Rui, Andrew Whinston","doi":"10.1145/2070710.2070713","DOIUrl":null,"url":null,"abstract":"The rise of social media has fundamentally changed the way information is produced, disseminated, and consumed in the digital age, which has profound economic and business effects. Among many different types of social media, social broadcasting networks such as Twitter in the U.S. and “Weibo” in China are particularly interesting from a business perspective. In the case of Twitter, the huge amounts of real-time data with extremely rich text, along with valuable structural information, makes Twitter a great platform to build Business Intelligence (BI) systems. We propose a framework of social-broadcasting-based BI systems that utilizes real-time information extracted from these data with text mining techniques. To demonstrate this framework, we designed and implemented a Twitter-based BI system that forecasts movie box office revenues during the opening weekend and forecasts daily revenue after 4 weeks. We found that incorporating information from Twitter could reduce the Mean Absolute Percentage Error (MAPE) by 44% for the opening weekend and by 36% for total revenue. For daily revenue forecasting, including Twitter information into a baseline model could reduce forecasting errors by 17.5% on average. On the basis of these results, we conclude that social-broadcasting-based BI systems have great potential and should be explored by both researchers and practitioners.","PeriodicalId":178565,"journal":{"name":"ACM Trans. Manag. Inf. Syst.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Manag. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2070710.2070713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

The rise of social media has fundamentally changed the way information is produced, disseminated, and consumed in the digital age, which has profound economic and business effects. Among many different types of social media, social broadcasting networks such as Twitter in the U.S. and “Weibo” in China are particularly interesting from a business perspective. In the case of Twitter, the huge amounts of real-time data with extremely rich text, along with valuable structural information, makes Twitter a great platform to build Business Intelligence (BI) systems. We propose a framework of social-broadcasting-based BI systems that utilizes real-time information extracted from these data with text mining techniques. To demonstrate this framework, we designed and implemented a Twitter-based BI system that forecasts movie box office revenues during the opening weekend and forecasts daily revenue after 4 weeks. We found that incorporating information from Twitter could reduce the Mean Absolute Percentage Error (MAPE) by 44% for the opening weekend and by 36% for total revenue. For daily revenue forecasting, including Twitter information into a baseline model could reduce forecasting errors by 17.5% on average. On the basis of these results, we conclude that social-broadcasting-based BI systems have great potential and should be explored by both researchers and practitioners.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计一个基于社交广播的商业智能系统
社交媒体的兴起从根本上改变了数字时代信息的生产、传播和消费方式,对经济和商业产生了深远的影响。在众多不同类型的社交媒体中,从商业角度来看,美国的Twitter和中国的“微博”等社交广播网络尤其有趣。以Twitter为例,大量的实时数据和极其丰富的文本,以及有价值的结构信息,使Twitter成为构建商业智能(BI)系统的绝佳平台。我们提出了一个基于社交广播的BI系统框架,该系统利用文本挖掘技术从这些数据中提取的实时信息。为了演示这个框架,我们设计并实现了一个基于twitter的BI系统,该系统可以预测首映周末的电影票房收入,并预测4周后的每日收入。我们发现,结合Twitter的信息可以将首映周末的平均绝对百分比误差(MAPE)降低44%,总收入降低36%。对于每日收入预测,将Twitter信息纳入基线模型可以平均减少17.5%的预测误差。基于这些结果,我们得出结论,基于社交广播的商业智能系统具有巨大的潜力,值得研究人员和实践者共同探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Social Media to Analyze Public Concerns and Policy Responses to COVID-19 in Hong Kong COVID-Safe Spatial Occupancy Monitoring Using OFDM-Based Features and Passive WiFi Samples SymptomID: A Framework for Rapid Symptom Identification in Pandemics Using News Reports Leveraging Individual and Collective Regularity to Profile and Segment User Locations from Mobile Phone Data Write Like a Pro or an Amateur? Effect of Medical Language Formality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1