Efficient Distance-based Global Sensitivity Analysis for Terrestrial Ecosystem Modeling

D. Lu, D. Ricciuto
{"title":"Efficient Distance-based Global Sensitivity Analysis for Terrestrial Ecosystem Modeling","authors":"D. Lu, D. Ricciuto","doi":"10.1109/ICDMW51313.2020.00052","DOIUrl":null,"url":null,"abstract":"Sensitivity analysis in terrestrial ecosystem modeling is important for understanding controlling processes, guiding model development, and targeting new observations to reduce parameter and prediction uncertainty. Complex and computationally expensive terrestrial ecosystem models (TEM) limit the number of ensemble simulations, requiring sophisticated and efficient methods to analyze sensitivities of multiple model responses to different types of parameter uncertainties. In this study, we propose a distance-based global sensitivity analysis (DGSA) method. DGSA first classifies model response samples into a small set of discrete classes and then calculates the distance between parameter frequency distributions in different classes to measure the parameter sensitivity. The principle is that, if the parameter distribution is the same in each class, then the model response is insensitive to the parameter, while a large difference in the distributions indicates the parameter is influential to the response. Built on this idea, DGSA can be applied to analyze sensitivity of a single and a group of responses to different kinds of parameter uncertainties including continuous, discrete and even stochastic. Besides the main-effect sensitivity from a single parameter, DGSA can also quantify the sensitivity from parameter interactions. Additionally, DGSA is computationally efficient which can use a small number of model evaluations to obtain an accurate and statistically significant result. We applied DGSA to two TEMs, one having eight parameters and three kinds of model responses, and the other having 47 parameters and a long-period response. We demonstrated that DGSA can be used for sensitivity problems with multiple responses and high-dimensional parameters efficiently.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sensitivity analysis in terrestrial ecosystem modeling is important for understanding controlling processes, guiding model development, and targeting new observations to reduce parameter and prediction uncertainty. Complex and computationally expensive terrestrial ecosystem models (TEM) limit the number of ensemble simulations, requiring sophisticated and efficient methods to analyze sensitivities of multiple model responses to different types of parameter uncertainties. In this study, we propose a distance-based global sensitivity analysis (DGSA) method. DGSA first classifies model response samples into a small set of discrete classes and then calculates the distance between parameter frequency distributions in different classes to measure the parameter sensitivity. The principle is that, if the parameter distribution is the same in each class, then the model response is insensitive to the parameter, while a large difference in the distributions indicates the parameter is influential to the response. Built on this idea, DGSA can be applied to analyze sensitivity of a single and a group of responses to different kinds of parameter uncertainties including continuous, discrete and even stochastic. Besides the main-effect sensitivity from a single parameter, DGSA can also quantify the sensitivity from parameter interactions. Additionally, DGSA is computationally efficient which can use a small number of model evaluations to obtain an accurate and statistically significant result. We applied DGSA to two TEMs, one having eight parameters and three kinds of model responses, and the other having 47 parameters and a long-period response. We demonstrated that DGSA can be used for sensitivity problems with multiple responses and high-dimensional parameters efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于距离的陆地生态系统模拟全球敏感性分析
陆地生态系统建模中的敏感性分析对于理解控制过程、指导模型开发、瞄准新的观测值以减少参数和预测的不确定性具有重要意义。复杂且计算成本高的陆地生态系统模型(TEM)限制了集合模拟的数量,需要复杂而有效的方法来分析多种模式响应对不同类型参数不确定性的敏感性。在这项研究中,我们提出了一种基于距离的全局敏感性分析(DGSA)方法。DGSA首先将模型响应样本划分为一个小的离散类集合,然后计算不同类中参数频率分布之间的距离来衡量参数的灵敏度。其原理是,如果每一类中参数分布相同,则模型响应对参数不敏感,而分布差异大则表明参数对响应有影响。基于这一思想,DGSA可以应用于分析单个和一组响应对不同类型参数不确定性的灵敏度,包括连续的、离散的甚至是随机的。除了单个参数的主效应灵敏度外,DGSA还可以量化参数相互作用的灵敏度。此外,DGSA计算效率高,可以使用少量模型评估获得准确且具有统计意义的结果。我们将DGSA应用于两个tem,其中一个具有8个参数和3种模型响应,另一个具有47个参数和长周期响应。我们证明了DGSA可以有效地用于具有多响应和高维参数的灵敏度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1