Sensors and Game Synchronization for Data Analysis in eSports

A. Stepanov, Andrey Lange, N. Khromov, Alexander Korotin, E. Burnaev, A. Somov
{"title":"Sensors and Game Synchronization for Data Analysis in eSports","authors":"A. Stepanov, Andrey Lange, N. Khromov, Alexander Korotin, E. Burnaev, A. Somov","doi":"10.1109/INDIN41052.2019.8972249","DOIUrl":null,"url":null,"abstract":"eSports industry has greatly progressed within the last decade in terms of audience and fund rising, broadcasting, networking and hardware. Since the number and quality of professional team has evolved too, there is a reasonable need in improving skills and training process of professional eSports athletes. In this work, we demonstrate a system able to collect heterogeneous data (physiological, environmental, video, telemetry) and guarantying synchronization with 10 ms accuracy. In particular, we demonstrate how to synchronize various sensors and ensure post synchronization, i.e. logged video, a so-called demo file, with the sensors data. Our experimental results achieved on the CS:GO game discipline show up to 3 ms accuracy of the time synchronization of the gaming computer.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

eSports industry has greatly progressed within the last decade in terms of audience and fund rising, broadcasting, networking and hardware. Since the number and quality of professional team has evolved too, there is a reasonable need in improving skills and training process of professional eSports athletes. In this work, we demonstrate a system able to collect heterogeneous data (physiological, environmental, video, telemetry) and guarantying synchronization with 10 ms accuracy. In particular, we demonstrate how to synchronize various sensors and ensure post synchronization, i.e. logged video, a so-called demo file, with the sensors data. Our experimental results achieved on the CS:GO game discipline show up to 3 ms accuracy of the time synchronization of the gaming computer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电子竞技数据分析的传感器和游戏同步
在过去的十年里,电子竞技产业在观众和资金的增加、广播、网络和硬件方面都取得了巨大的进步。由于职业队伍的数量和质量也在不断发展,因此有必要提高职业电竞运动员的技能和训练过程。在这项工作中,我们展示了一个能够收集异构数据(生理,环境,视频,遥测)并保证同步精度为10毫秒的系统。特别是,我们演示了如何同步各种传感器并确保后同步,即记录视频,即所谓的演示文件,与传感器数据。我们在CS:GO游戏学科上取得的实验结果表明,游戏计算机的时间同步精度高达3 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital Twin in Industry 4.0: Technologies, Applications and Challenges Using Multi-Agent Systems for Demand Response Aggregators: Analysis and Requirements for the Development Developing a Secure, Smart Microgrid Energy Market using Distributed Ledger Technologies An Intelligent Assistance System for Controlling Wind-Assisted Ship Propulsion Systems OPC UA Information Model and a Wrapper for IEC 61499 Runtimes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1