Estimation and control of non-linear plant in ARX form using MDPP controlled Fuzzy Identifier

M. Naeem, Zunaib Ali, A. Rashid, H. Zaman, N. Christofides, B. Khan
{"title":"Estimation and control of non-linear plant in ARX form using MDPP controlled Fuzzy Identifier","authors":"M. Naeem, Zunaib Ali, A. Rashid, H. Zaman, N. Christofides, B. Khan","doi":"10.1109/ICET.2015.7389183","DOIUrl":null,"url":null,"abstract":"The paper presents the estimation of an unknown non-linear system in ARX form. The estimated model is used in Adaptive self-tuning regulator to regulate the output of plant at desired reference input using Minimum Degree Pole Placement Controller (MDPP). Most of the literature includes the conventional RLS algorithm to estimate the system parameters. The estimation technique addressed here is Fuzzy Logic Identifier (FLI). The proposed estimator approximates the system using a linear model at each operating point. The linear identification of model necessitates the use of linear control strategy. Therefore, the design of MDPP controller based on linear identified system is also presented. The consequents of FLI are updated using Levenberg-Marqardt (LM) algorithm. MATLAB/Simulink is used for the implementation of proposed estimation techniques. The effectiveness of the proposed estimators and control strategy is tested on a non-linear plant. The results are presented and debated together with a comparative analysis of RLS and FLI. Superiority in performance is found for FLI in estimating and controlling the non-linear using MDPP. The performance indices Mean Square Error (MSE), Mean Absolute Error (MAE) and Mean Time-Weighted Error validate the effectiveness of proposed FLI.","PeriodicalId":166507,"journal":{"name":"2015 International Conference on Emerging Technologies (ICET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Emerging Technologies (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2015.7389183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the estimation of an unknown non-linear system in ARX form. The estimated model is used in Adaptive self-tuning regulator to regulate the output of plant at desired reference input using Minimum Degree Pole Placement Controller (MDPP). Most of the literature includes the conventional RLS algorithm to estimate the system parameters. The estimation technique addressed here is Fuzzy Logic Identifier (FLI). The proposed estimator approximates the system using a linear model at each operating point. The linear identification of model necessitates the use of linear control strategy. Therefore, the design of MDPP controller based on linear identified system is also presented. The consequents of FLI are updated using Levenberg-Marqardt (LM) algorithm. MATLAB/Simulink is used for the implementation of proposed estimation techniques. The effectiveness of the proposed estimators and control strategy is tested on a non-linear plant. The results are presented and debated together with a comparative analysis of RLS and FLI. Superiority in performance is found for FLI in estimating and controlling the non-linear using MDPP. The performance indices Mean Square Error (MSE), Mean Absolute Error (MAE) and Mean Time-Weighted Error validate the effectiveness of proposed FLI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用MDPP控制模糊辨识器对ARX型非线性对象进行估计与控制
本文给出了未知非线性系统的ARX型估计。将该估计模型应用于自适应自整定调节器中,利用最小极点配置控制器(MDPP)在期望参考输入处调节被控对象的输出。大多数文献都采用传统的RLS算法来估计系统参数。这里讨论的估计技术是模糊逻辑标识符(FLI)。所提出的估计器在每个工作点使用线性模型逼近系统。模型的线性辨识要求采用线性控制策略。因此,提出了基于线性辨识系统的MDPP控制器的设计。使用Levenberg-Marqardt (LM)算法更新FLI结果。MATLAB/Simulink用于实现所提出的估计技术。在一个非线性对象上验证了所提出的估计器和控制策略的有效性。结果提出,并讨论与比较分析的RLS和FLI。在非线性估计和非线性控制方面,发现了FLI的优越性。性能指标均方误差(MSE)、平均绝对误差(MAE)和平均时间加权误差验证了FLI的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study of target tracking with Kalman filter, extended Kalman filter and particle filter using received signal strength measurements Optimizing NEURON brain simulator with Remote Memory Access on distributed memory systems Theoretical and empirical based extinction coefficients for fog attenuation in terms of visibility at 850 nm Effort estimation of ETL projects using Forward Stepwise Regression An evaluation of software fault tolerance techniques for optimality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1