Gene Silencing Agents in Breast Cancer

A. Qattan
{"title":"Gene Silencing Agents in Breast Cancer","authors":"A. Qattan","doi":"10.5772/INTECHOPEN.79642","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRs) are a class of non-coding RNAs, approximately 20–25 nucleotides long, discovered in the nematode, Caenorhabditis elegans , in 1993. There are two primary categories of non-coding RNA (ncRNA): (1) short interfering RNAs (siRNA) and (2) microRNAs (miRs). In general, miRs control protein production via partially complementary binding of the mRNA 3′UTRs. Both siRNAs and miRNAs are critical regulators of developmental and homeostatic processes as well as disease pathogenesis. While the treatment of advanced stage breast cancer presents several challenges, the development of therapeutic resistance contributes to a high mortality rate. Dysregulation of miR expression has been implicated in progression of breast cancer disease. Moreover, miRs have been found to play a role in the development of drug resistance. In this context, one of the therapeutic potentials of miRNAs is the correlation of circulating miR levels with breast cancer progression stages and disease phenotypes. Secondly, researchers are investigat-ing novel delivery strategies for the substitution or silencing of ncRNAs involved in the disease. This chapter describes both the general miRNA mechanism of actions and the miRNAs related to breast cancer research. It is specifically designed for breast cancer researchers with expertise in gene delivery, clinicians, and clinical translational scientists.","PeriodicalId":336265,"journal":{"name":"Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

MicroRNAs (miRs) are a class of non-coding RNAs, approximately 20–25 nucleotides long, discovered in the nematode, Caenorhabditis elegans , in 1993. There are two primary categories of non-coding RNA (ncRNA): (1) short interfering RNAs (siRNA) and (2) microRNAs (miRs). In general, miRs control protein production via partially complementary binding of the mRNA 3′UTRs. Both siRNAs and miRNAs are critical regulators of developmental and homeostatic processes as well as disease pathogenesis. While the treatment of advanced stage breast cancer presents several challenges, the development of therapeutic resistance contributes to a high mortality rate. Dysregulation of miR expression has been implicated in progression of breast cancer disease. Moreover, miRs have been found to play a role in the development of drug resistance. In this context, one of the therapeutic potentials of miRNAs is the correlation of circulating miR levels with breast cancer progression stages and disease phenotypes. Secondly, researchers are investigat-ing novel delivery strategies for the substitution or silencing of ncRNAs involved in the disease. This chapter describes both the general miRNA mechanism of actions and the miRNAs related to breast cancer research. It is specifically designed for breast cancer researchers with expertise in gene delivery, clinicians, and clinical translational scientists.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌中的基因沉默剂
MicroRNAs (miRs)是一类非编码rna,长约20-25个核苷酸,于1993年在秀丽隐杆线虫中发现。非编码RNA (ncRNA)主要有两大类:(1)短干扰RNA (siRNA)和(2)microRNAs (miRs)。一般来说,miRs通过mRNA 3 ' utr的部分互补结合来控制蛋白质的产生。sirna和mirna都是发育和体内平衡过程以及疾病发病机制的关键调节因子。虽然晚期乳腺癌的治疗面临一些挑战,但治疗耐药性的发展导致了高死亡率。miR表达的失调与乳腺癌疾病的进展有关。此外,已发现miRs在耐药性的发展中起作用。在这种情况下,mirna的治疗潜力之一是循环miR水平与乳腺癌进展阶段和疾病表型的相关性。其次,研究人员正在研究新的递送策略,以替代或沉默与该疾病有关的ncrna。本章既介绍了一般miRNA的作用机制,也介绍了与乳腺癌研究相关的miRNA。它是专门为具有基因传递专业知识的乳腺癌研究人员、临床医生和临床转化科学家设计的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning and Rule Mining Techniques in the Study of Gene Inactivation and RNA Interference Modulating Gene Expression - Abridging the RNAi and CRISPR-Cas9 Technologies Strand Displacement Amplification for Multiplex Detection of Nucleic Acids Nontransformative Strategies for RNAi in Crop Protection MultiSite Gateway Technology Is Useful for Donor DNA Plasmid Construction in CRISPR/Cas9-Mediated Knock-In System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1