Evaluation of a Case-based Facial Action Units Recognition Approach

S.F. Wang, J. Xue, X.F. Wang
{"title":"Evaluation of a Case-based Facial Action Units Recognition Approach","authors":"S.F. Wang, J. Xue, X.F. Wang","doi":"10.1109/ICCIS.2006.252269","DOIUrl":null,"url":null,"abstract":"In this paper, we evaluate the performance of a case-based automatic facial action units recognition approach using interactive genetic algorithm (IGA). First, the case-based facial action units recognition approach is introduced. This method retrieves the most similar case image from case database using IGA and reuses the action units of the matched case image to the test face image. Second, to evaluate the effectiveness of our approach, comparison experiments with eigenface method on simple test images are done. The experimental results show that, for our method, the average recognition rate is about 77.5% on single AUs and average similarity rate is 82.8% on AU combinations, which are both higher than those of the eigenface method. Third, experiments of the case-based automatic facial action units recognition approach on complex test images is presented in this paper. The results prove the robusticity of our approach. A recognition rate of single AUs of 82.8% and a similarity rate of AU combinations of 93.1% are obtained","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"1990 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we evaluate the performance of a case-based automatic facial action units recognition approach using interactive genetic algorithm (IGA). First, the case-based facial action units recognition approach is introduced. This method retrieves the most similar case image from case database using IGA and reuses the action units of the matched case image to the test face image. Second, to evaluate the effectiveness of our approach, comparison experiments with eigenface method on simple test images are done. The experimental results show that, for our method, the average recognition rate is about 77.5% on single AUs and average similarity rate is 82.8% on AU combinations, which are both higher than those of the eigenface method. Third, experiments of the case-based automatic facial action units recognition approach on complex test images is presented in this paper. The results prove the robusticity of our approach. A recognition rate of single AUs of 82.8% and a similarity rate of AU combinations of 93.1% are obtained
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于案例的面部动作单元识别方法的评价
在本文中,我们使用交互式遗传算法(IGA)评估了基于案例的自动面部动作单元识别方法的性能。首先,介绍了基于案例的面部动作单元识别方法。该方法利用IGA从案例数据库中检索最相似的案例图像,并将匹配的案例图像的动作单元重用到测试人脸图像中。其次,为了评估该方法的有效性,在简单的测试图像上与特征脸方法进行了对比实验。实验结果表明,该方法对单个AU的平均识别率约为77.5%,对AU组合的平均相似率为82.8%,均高于特征脸方法。第三,对基于案例的复杂测试图像面部动作单元自动识别方法进行了实验研究。结果证明了该方法的鲁棒性。单个AU的识别率为82.8%,AU组合的相似率为93.1%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1