Constructing test collections by inferring document relevance via extracted relevant information

Shahzad Rajput, Matthew Ekstrand-Abueg, Virgil Pavlu, J. Aslam
{"title":"Constructing test collections by inferring document relevance via extracted relevant information","authors":"Shahzad Rajput, Matthew Ekstrand-Abueg, Virgil Pavlu, J. Aslam","doi":"10.1145/2396761.2396783","DOIUrl":null,"url":null,"abstract":"The goal of a typical information retrieval system is to satisfy a user's information need---e.g., by providing an answer or information \"nugget\"---while the actual search space of a typical information retrieval system consists of documents---i.e., collections of nuggets. In this paper, we characterize this relationship between nuggets and documents and discuss applications to system evaluation. In particular, for the problem of test collection construction for IR system evaluation, we demonstrate a highly efficient algorithm for simultaneously obtaining both relevant documents and relevant information. Our technique exploits the mutually reinforcing relationship between relevant documents and relevant information, yielding document-based test collections whose efficiency and efficacy exceed those of typical Cranfield-style test collections, while also generating sets of highly relevant information.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2396783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The goal of a typical information retrieval system is to satisfy a user's information need---e.g., by providing an answer or information "nugget"---while the actual search space of a typical information retrieval system consists of documents---i.e., collections of nuggets. In this paper, we characterize this relationship between nuggets and documents and discuss applications to system evaluation. In particular, for the problem of test collection construction for IR system evaluation, we demonstrate a highly efficient algorithm for simultaneously obtaining both relevant documents and relevant information. Our technique exploits the mutually reinforcing relationship between relevant documents and relevant information, yielding document-based test collections whose efficiency and efficacy exceed those of typical Cranfield-style test collections, while also generating sets of highly relevant information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过提取相关信息推断文档的相关性来构建测试集合
典型的信息检索系统的目标是满足用户的信息需求。,通过提供答案或信息“块”,而典型的信息检索系统的实际搜索空间由文档组成。,收集金块。在本文中,我们描述了掘金和文档之间的这种关系,并讨论了在系统评估中的应用。特别是针对红外系统评价的测试集构建问题,提出了一种同时获取相关文档和相关信息的高效算法。我们的技术利用了相关文档和相关信息之间相互加强的关系,产生了基于文档的测试集合,其效率和功效超过了典型的克兰菲尔德风格的测试集合,同时还生成了高度相关的信息集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting web search success with fine-grained interaction data User activity profiling with multi-layer analysis Search result presentation based on faceted clustering Domain dependent query reformulation for web search CrowdTiles: presenting crowd-based information for event-driven information needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1