D. Kundur, Xianyong Feng, Shan Liu, T. Zourntos, K. Butler-Purry
{"title":"Towards a Framework for Cyber Attack Impact Analysis of the Electric Smart Grid","authors":"D. Kundur, Xianyong Feng, Shan Liu, T. Zourntos, K. Butler-Purry","doi":"10.1109/SMARTGRID.2010.5622049","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for cyber attack impact analysis of a smart grid. We focus on the model synthesis stage in which both cyber and physical grid entity relationships are modeled as directed graphs. Each node of the graph has associated state information that is governed by dynamical system equations that model the physics of the interaction (for electrical grid components) or functionality (for cyber grid elements). We illustrate how cause-effect relationships can be conveniently expressed for both analysis and extension to large-scale smart grid systems.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"184","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 184
Abstract
This paper presents a framework for cyber attack impact analysis of a smart grid. We focus on the model synthesis stage in which both cyber and physical grid entity relationships are modeled as directed graphs. Each node of the graph has associated state information that is governed by dynamical system equations that model the physics of the interaction (for electrical grid components) or functionality (for cyber grid elements). We illustrate how cause-effect relationships can be conveniently expressed for both analysis and extension to large-scale smart grid systems.