MD-Roofline: A Training Performance Analysis Model for Distributed Deep Learning

Tianhao Miao, Qinghua Wu, Ting Liu, Penglai Cui, Rui Ren, Zhenyu Li, Gaogang Xie
{"title":"MD-Roofline: A Training Performance Analysis Model for Distributed Deep Learning","authors":"Tianhao Miao, Qinghua Wu, Ting Liu, Penglai Cui, Rui Ren, Zhenyu Li, Gaogang Xie","doi":"10.1109/ISCC55528.2022.9912757","DOIUrl":null,"url":null,"abstract":"Due to the bulkiness and sophistication of the Distributed Deep Learning (DDL) systems, it leaves an enormous challenge for AI researchers and operation engineers to analyze, diagnose and locate the performance bottleneck during the training stage. Existing performance models and frameworks gain little insight on the performance reduction that a performance straggler induces. In this paper, we introduce MD-Roofline, a training performance analysis model, which extends the traditional rooftine model with communication dimension. The model considers the layer-wise attributes at application level, and a series of achievable peak performance metrics at hardware level. With the assistance of our MD-Roofline, the AI researchers and DDL operation engineers could locate the system bottleneck, which contains three dimensions: intra-GPU computation capacity, intra-GPU memory access bandwidth and inter-GPU communication bandwidth. We demonstrate that our performance analysis model provides great insights in bottleneck analysis when training 12 classic CNNs.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the bulkiness and sophistication of the Distributed Deep Learning (DDL) systems, it leaves an enormous challenge for AI researchers and operation engineers to analyze, diagnose and locate the performance bottleneck during the training stage. Existing performance models and frameworks gain little insight on the performance reduction that a performance straggler induces. In this paper, we introduce MD-Roofline, a training performance analysis model, which extends the traditional rooftine model with communication dimension. The model considers the layer-wise attributes at application level, and a series of achievable peak performance metrics at hardware level. With the assistance of our MD-Roofline, the AI researchers and DDL operation engineers could locate the system bottleneck, which contains three dimensions: intra-GPU computation capacity, intra-GPU memory access bandwidth and inter-GPU communication bandwidth. We demonstrate that our performance analysis model provides great insights in bottleneck analysis when training 12 classic CNNs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
md - rooline:分布式深度学习的训练性能分析模型
由于分布式深度学习(DDL)系统的庞大和复杂,它给人工智能研究人员和运营工程师在训练阶段分析、诊断和定位性能瓶颈留下了巨大的挑战。现有的性能模型和框架对性能掉队所导致的性能降低几乎没有了解。本文引入了训练绩效分析模型md - rooline,将传统的训练绩效分析模型扩展到通信维度。该模型在应用程序级别考虑分层属性,在硬件级别考虑一系列可实现的峰值性能指标。在我们的md - rooline的帮助下,AI研究人员和DDL运维工程师可以定位系统瓶颈,这包括三个维度:gpu内部的计算能力,gpu内部的内存访问带宽和gpu之间的通信带宽。在训练12个经典cnn时,我们证明了我们的性能分析模型在瓶颈分析方面提供了很好的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1