{"title":"Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations","authors":"Masahiro Yamamoto","doi":"10.3934/mcrf.2022017","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider initial boundary value problems of time-fractional advection-diffusion equations with the zero Dirichlet boundary value <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\partial_t^{\\alpha} u(x, t) = -Au(x, t) $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M2\">\\begin{document}$ -A = \\sum_{i, j = 1}^d \\partial_i(a_{ij}(x) \\partial_j) + \\sum_{j = 1}^d b_j(x) \\partial_j + c(x) $\\end{document}</tex-math></inline-formula>. We establish the uniqueness for an inverse problem of determining an order <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\alpha $\\end{document}</tex-math></inline-formula> of fractional derivatives by data <inline-formula><tex-math id=\"M4\">\\begin{document}$ u(x_0, t) $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M5\">\\begin{document}$ 0<t<T $\\end{document}</tex-math></inline-formula> at one point <inline-formula><tex-math id=\"M6\">\\begin{document}$ x_0 $\\end{document}</tex-math></inline-formula> in a spatial domain <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula>. The uniqueness holds even under assumption that <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M9\">\\begin{document}$ A $\\end{document}</tex-math></inline-formula> are unknown, provided that the initial value does not change signs and is not identically zero. The proof is based on the eigenfunction expansions of finitely dimensional approximating solutions, a decay estimate and the asymptotic expansions of the Mittag-Leffler functions for large time.</p>","PeriodicalId":418020,"journal":{"name":"Mathematical Control & Related Fields","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control & Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mcrf.2022017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We consider initial boundary value problems of time-fractional advection-diffusion equations with the zero Dirichlet boundary value \begin{document}$ \partial_t^{\alpha} u(x, t) = -Au(x, t) $\end{document}, where \begin{document}$ -A = \sum_{i, j = 1}^d \partial_i(a_{ij}(x) \partial_j) + \sum_{j = 1}^d b_j(x) \partial_j + c(x) $\end{document}. We establish the uniqueness for an inverse problem of determining an order \begin{document}$ \alpha $\end{document} of fractional derivatives by data \begin{document}$ u(x_0, t) $\end{document} for \begin{document}$ 0 at one point \begin{document}$ x_0 $\end{document} in a spatial domain \begin{document}$ \Omega $\end{document}. The uniqueness holds even under assumption that \begin{document}$ \Omega $\end{document} and \begin{document}$ A $\end{document} are unknown, provided that the initial value does not change signs and is not identically zero. The proof is based on the eigenfunction expansions of finitely dimensional approximating solutions, a decay estimate and the asymptotic expansions of the Mittag-Leffler functions for large time.