A FAIR evaluation of public datasets for stress detection systems

Álvaro Cuno, Nelly Condori-Fernández, Alexis Mendoza, Wilber Roberto Ramos Lovón
{"title":"A FAIR evaluation of public datasets for stress detection systems","authors":"Álvaro Cuno, Nelly Condori-Fernández, Alexis Mendoza, Wilber Roberto Ramos Lovón","doi":"10.1109/SCCC51225.2020.9281274","DOIUrl":null,"url":null,"abstract":"Nowadays, datasets are an essential asset used to train, validate, and test stress detection systems based on machine learning. In this paper, we used two sets of FAIR metrics for evaluating five public datasets for stress detection. Results indicate that all these datasets comply to some extent with the (F)indable, (A)ccessible, and (R)eusable principles, but none with the (I)nteroperable principle. These findings contribute to raising awareness on (i) the need for the FAIRness development and improvement of stress datasets, and (ii) the importance of promoting open science in the affective computing community.","PeriodicalId":117157,"journal":{"name":"2020 39th International Conference of the Chilean Computer Science Society (SCCC)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC51225.2020.9281274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays, datasets are an essential asset used to train, validate, and test stress detection systems based on machine learning. In this paper, we used two sets of FAIR metrics for evaluating five public datasets for stress detection. Results indicate that all these datasets comply to some extent with the (F)indable, (A)ccessible, and (R)eusable principles, but none with the (I)nteroperable principle. These findings contribute to raising awareness on (i) the need for the FAIRness development and improvement of stress datasets, and (ii) the importance of promoting open science in the affective computing community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对应力检测系统的公共数据集进行公平评估
如今,数据集是用于训练、验证和测试基于机器学习的压力检测系统的重要资产。在本文中,我们使用了两组FAIR指标来评估用于应力检测的五个公共数据集。结果表明,所有这些数据集都在一定程度上符合(F)可索引原则、(A)可访问原则和(R)可重用原则,但不符合(I)可互操作原则。这些发现有助于提高人们对以下方面的认识:(i)公平开发和改进压力数据集的必要性,以及(ii)在情感计算社区促进开放科学的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EM-(RA)2: a tool support proposal for Learning Outcomes and the Teaching-Learning Process Prediction of student’s retention in first year of engineering program at a technological chilean university Modelo de evaluación gamificado en cursos de algoritmos y programación New initialization for algorithms to solve Median String Problem Heuristic Function to Solve The Generalized Covering TSP with Artificial Intelligence Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1