Zhebin Hu, L. D. de Vreede, M. Alavi, D. A. Calvillo-Cortes, R. Staszewski, Songbai He
{"title":"A 5.9 GHz RFDAC-based outphasing power amplifier in 40-nm CMOS with 49.2% efficiency and 22.2 dBm power","authors":"Zhebin Hu, L. D. de Vreede, M. Alavi, D. A. Calvillo-Cortes, R. Staszewski, Songbai He","doi":"10.1109/RFIC.2016.7508287","DOIUrl":null,"url":null,"abstract":"In this paper, we present a fully integrated RFDAC-based outphasing power amplifier (ROPA) in 40-nm CMOS that achieves 22.2 dBm peak output power with 49.2% drain efficiency at 5.9 GHz. It employs differential quasi-load-insensitive Class-E branch PAs that can dynamically be segmented using a 3-bit digital amplitude control word to improve efficiency at power back-off. At 8 dB back-off, this segmentation technique improves the ROPA drain and system efficiency by 5% and 7%, respectively, when compared to a non-segmented approach.","PeriodicalId":163595,"journal":{"name":"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"154 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2016.7508287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
In this paper, we present a fully integrated RFDAC-based outphasing power amplifier (ROPA) in 40-nm CMOS that achieves 22.2 dBm peak output power with 49.2% drain efficiency at 5.9 GHz. It employs differential quasi-load-insensitive Class-E branch PAs that can dynamically be segmented using a 3-bit digital amplitude control word to improve efficiency at power back-off. At 8 dB back-off, this segmentation technique improves the ROPA drain and system efficiency by 5% and 7%, respectively, when compared to a non-segmented approach.