Debugging a Policy: Automatic Action-Policy Testing in AI Planning

Marcel Steinmetz, Daniel Fiser, Hasan Ferit Eniser, Patrick Ferber, Timo P. Gros, Philippe, Heim, D. Höller, Xandra Schuler, Valentin Wüstholz, M. Christakis, Jörg Hoffmann
{"title":"Debugging a Policy: Automatic Action-Policy Testing in AI Planning","authors":"Marcel Steinmetz, Daniel Fiser, Hasan Ferit Eniser, Patrick Ferber, Timo P. Gros, Philippe, Heim, D. Höller, Xandra Schuler, Valentin Wüstholz, M. Christakis, Jörg Hoffmann","doi":"10.1609/icaps.v32i1.19820","DOIUrl":null,"url":null,"abstract":"Testing is a promising way to gain trust in neural action policies π. Previous work on policy testing in sequential decision making targeted environment behavior leading to failure conditions. But if the failure is unavoidable given that behavior, then π is not actually to blame. For a situation to qualify as a \"bug\" in π, there must be an alternative policy π' that does better. We introduce a generic policy testing framework based on that intuition. This raises the bug confirmation problem, deciding whether or not a state is a bug. We analyze the use of optimistic and pessimistic bounds for the design of test oracles approximating that problem. We contribute an implementation of our framework in classical planning, experimenting with several test oracles and with random-walk methods generating test states biased to poor policy performance and/or state novelty. We evaluate these techniques on policies π learned with ASNets. We find that they are able to effectively identify bugs in these π, and that our random-walk biases improve over uninformed baselines.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Testing is a promising way to gain trust in neural action policies π. Previous work on policy testing in sequential decision making targeted environment behavior leading to failure conditions. But if the failure is unavoidable given that behavior, then π is not actually to blame. For a situation to qualify as a "bug" in π, there must be an alternative policy π' that does better. We introduce a generic policy testing framework based on that intuition. This raises the bug confirmation problem, deciding whether or not a state is a bug. We analyze the use of optimistic and pessimistic bounds for the design of test oracles approximating that problem. We contribute an implementation of our framework in classical planning, experimenting with several test oracles and with random-walk methods generating test states biased to poor policy performance and/or state novelty. We evaluate these techniques on policies π learned with ASNets. We find that they are able to effectively identify bugs in these π, and that our random-walk biases improve over uninformed baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调试策略:AI规划中的自动动作策略测试
测试是神经行为策略中获得信任的一种很有前途的方法。先前在序贯决策中策略测试的研究针对导致失败的环境行为。但是,如果失败是不可避免的,考虑到这种行为,那么π实际上并不是罪魁祸首。如果一种情况符合π的“缺陷”,那么一定有另一种策略π'做得更好。我们基于这种直觉引入了一个通用策略测试框架。这就产生了bug确认问题,即决定一个状态是否为bug。我们分析了使用乐观界和悲观界来设计近似该问题的测试预言机。我们在经典规划中贡献了我们的框架的实现,用几个测试预言机和随机漫步方法进行实验,生成偏向于差策略性能和/或状态新颖性的测试状态。我们在使用ASNets学习的策略π上评估这些技术。我们发现它们能够有效地识别这些π中的错误,并且我们的随机漫步偏差在不知情的基线上得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1