The mechanical and electronic properties of spinel oxides VX2O4 (X = Mn and Fe) by first principle calculations

B. Yildiz, A. Erkişi, G. Surucu
{"title":"The mechanical and electronic properties of spinel oxides VX2O4 (X = Mn and Fe) by first principle calculations","authors":"B. Yildiz, A. Erkişi, G. Surucu","doi":"10.1063/1.5135439","DOIUrl":null,"url":null,"abstract":"We have performed first-principles density functional theory calculations within generalized-gradient approximation to obtain the mechanical properties and the electronic behavior of Vanadium based Spinel Oxides VX2O4 (X=Mn and Fe) which conform Fm-3m space group with 225 space number and are promising good candidates for spintronic applications due to their half-metallic band gaps (Eg=1.71 eV for VFe2O4 and Eg = 0.53 eV for VMn2O4) in the plotted spin-polarized electronic band structure. Also, the calculated negative formation enthalpies indicate that these materials have thermodynamic stability and structural synthesizability. Additionally, the calculated elastic constants by using stress-strain approach indicate mechanical stability of above-mentioned materials.We have performed first-principles density functional theory calculations within generalized-gradient approximation to obtain the mechanical properties and the electronic behavior of Vanadium based Spinel Oxides VX2O4 (X=Mn and Fe) which conform Fm-3m space group with 225 space number and are promising good candidates for spintronic applications due to their half-metallic band gaps (Eg=1.71 eV for VFe2O4 and Eg = 0.53 eV for VMn2O4) in the plotted spin-polarized electronic band structure. Also, the calculated negative formation enthalpies indicate that these materials have thermodynamic stability and structural synthesizability. Additionally, the calculated elastic constants by using stress-strain approach indicate mechanical stability of above-mentioned materials.","PeriodicalId":233679,"journal":{"name":"TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5135439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We have performed first-principles density functional theory calculations within generalized-gradient approximation to obtain the mechanical properties and the electronic behavior of Vanadium based Spinel Oxides VX2O4 (X=Mn and Fe) which conform Fm-3m space group with 225 space number and are promising good candidates for spintronic applications due to their half-metallic band gaps (Eg=1.71 eV for VFe2O4 and Eg = 0.53 eV for VMn2O4) in the plotted spin-polarized electronic band structure. Also, the calculated negative formation enthalpies indicate that these materials have thermodynamic stability and structural synthesizability. Additionally, the calculated elastic constants by using stress-strain approach indicate mechanical stability of above-mentioned materials.We have performed first-principles density functional theory calculations within generalized-gradient approximation to obtain the mechanical properties and the electronic behavior of Vanadium based Spinel Oxides VX2O4 (X=Mn and Fe) which conform Fm-3m space group with 225 space number and are promising good candidates for spintronic applications due to their half-metallic band gaps (Eg=1.71 eV for VFe2O4 and Eg = 0.53 eV for VMn2O4) in the plotted spin-polarized electronic band structure. Also, the calculated negative formation enthalpies indicate that these materials have thermodynamic stability and structural synthesizability. Additionally, the calculated elastic constants by using stress-strain approach indicate mechanical stability of above-mentioned materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用第一性原理计算尖晶石氧化物VX2O4 (X = Mn和Fe)的力学和电子性能
我们在广义梯度近似下进行了第一性原理密度泛函理论计算,得到了钒基尖晶石氧化物VX2O4 (X=Mn和Fe)的力学性能和电子行为,它们符合225空间数的m-3m空间群,并且由于其半金属带隙(VFe2O4的Eg=1.71 eV和VMn2O4的Eg= 0.53 eV)在标出的自旋极化电子带结构中具有良好的自旋电子应用前景。计算得到的负生成焓也表明这些材料具有热力学稳定性和结构可合成性。此外,采用应力应变法计算的弹性常数表明了上述材料的力学稳定性。我们在广义梯度近似下进行了第一性原理密度泛函理论计算,得到了钒基尖晶石氧化物VX2O4 (X=Mn和Fe)的力学性能和电子行为,它们符合225空间数的m-3m空间群,并且由于其半金属带隙(VFe2O4的Eg=1.71 eV和VMn2O4的Eg= 0.53 eV)在标出的自旋极化电子带结构中具有良好的自旋电子应用前景。计算得到的负生成焓也表明这些材料具有热力学稳定性和结构可合成性。此外,采用应力应变法计算的弹性常数表明了上述材料的力学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metamaterial inspired sensor for detection of engine lubricant oil condition Titanium - carbon multilayer nanostructures obtained by thermionic vacuum arc method Total ionizing dose analysis of a native detector and a satellite on orbit Comparison of multiple static segment and sliding window techniques in prostate radiotherapy Dual scalar Aharonov Bohm phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1