Emotion Recognition In Videos For Low-Memory Systems Using Deep-Learning

Ahmed F. Hagar, Hazem M. Abbas, M. Khalil
{"title":"Emotion Recognition In Videos For Low-Memory Systems Using Deep-Learning","authors":"Ahmed F. Hagar, Hazem M. Abbas, M. Khalil","doi":"10.1109/ICCES48960.2019.9068168","DOIUrl":null,"url":null,"abstract":"This paper explores a deep learning model for emotion recognition in videos, suitable for systems with limited memory like robots and embedded-systems. The proposed model is a Mini-xception+LSTM architecure with around 80k parameters. This model got a classification accuracy of 93% in dinstinction between Anger and Amusement emotions using the BioVidEmo dataset, compared to 70% accuracy that a recent work got for the same two emotions, and got 86 % and 90 % classification accuracy using the CK+dataset for seven and six emotions, respectively.","PeriodicalId":136643,"journal":{"name":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES48960.2019.9068168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper explores a deep learning model for emotion recognition in videos, suitable for systems with limited memory like robots and embedded-systems. The proposed model is a Mini-xception+LSTM architecure with around 80k parameters. This model got a classification accuracy of 93% in dinstinction between Anger and Amusement emotions using the BioVidEmo dataset, compared to 70% accuracy that a recent work got for the same two emotions, and got 86 % and 90 % classification accuracy using the CK+dataset for seven and six emotions, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习的低记忆系统视频中的情绪识别
本文探讨了一种视频情感识别的深度学习模型,适用于机器人和嵌入式系统等内存有限的系统。提出的模型是一个mini - exception +LSTM架构,大约有80k个参数。使用BioVidEmo数据集,该模型在愤怒和娱乐情绪之间的分类准确率为93%,而最近的一项研究对相同的两种情绪的分类准确率为70%,使用CK+数据集对7种和6种情绪的分类准确率分别为86%和90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Social Networking Sites (SNS) and Digital Communication Across Nations Improving Golay Code Using Hashing Technique Alzheimer's Disease Integrated Ontology (ADIO) Session PC: Parallel and Cloud Computing Multipath Traffic Engineering for Software Defined Networking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1