W&G-Bert: A Concept for a Pre-Trained Automotive Warranty and Goodwill Language Representation Model for Warranty and Goodwill Text Mining

Lukas Jonathan Weber, Alice Kirchheim, Axel Zimmermann
{"title":"W&G-Bert: A Concept for a Pre-Trained Automotive Warranty and Goodwill Language Representation Model for Warranty and Goodwill Text Mining","authors":"Lukas Jonathan Weber, Alice Kirchheim, Axel Zimmermann","doi":"10.5121/csit.2022.120304","DOIUrl":null,"url":null,"abstract":"The request for precise text mining applications to extract information of company based automotive warranty and goodwill (W&G) data is steadily increasing. The progress of the analytical competence of text mining methods for information extraction is among others based on the developments and insights of deep learning techniques applied in natural language processing (NLP). Directly applying NLP based architectures to automotive W&G text mining would wage to a significant performance loss due to different word distributions of general domain and W&G specific corpora. Therefore, labelled W&G training datasets are necessary to transform a general-domain language model in a specific-domain one to increase the performance in W&G text mining tasks.","PeriodicalId":153049,"journal":{"name":"Computer Networks & Communications Trends","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks & Communications Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The request for precise text mining applications to extract information of company based automotive warranty and goodwill (W&G) data is steadily increasing. The progress of the analytical competence of text mining methods for information extraction is among others based on the developments and insights of deep learning techniques applied in natural language processing (NLP). Directly applying NLP based architectures to automotive W&G text mining would wage to a significant performance loss due to different word distributions of general domain and W&G specific corpora. Therefore, labelled W&G training datasets are necessary to transform a general-domain language model in a specific-domain one to increase the performance in W&G text mining tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
W&G-Bert:用于保修和商誉文本挖掘的预训练汽车保修和商誉语言表示模型的概念
对精确文本挖掘应用程序提取基于公司的汽车保修和商誉(W&G)数据信息的需求正在稳步增长。用于信息提取的文本挖掘方法的分析能力的进步是基于自然语言处理(NLP)中应用的深度学习技术的发展和见解。由于通用领域和W&G特定语料库的词分布不同,直接将基于NLP的体系结构应用于汽车W&G文本挖掘会导致显著的性能损失。因此,标记W&G训练数据集是将通用领域语言模型转换为特定领域语言模型以提高W&G文本挖掘任务性能所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Challenges and Viability of using Blockchain for WSN Security An Application to Provide Translated Subtitles and Pictures for Youth English Learners using Speech-to-Text and Nlp Techniques Analyzing and Personalizing the Learning Performance for Special Needs Students using Machine Learning and Data Analytics W&G-Bert: A Concept for a Pre-Trained Automotive Warranty and Goodwill Language Representation Model for Warranty and Goodwill Text Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1