How Much Enhancing Confidentiality and Integrity on Data Can Affect Mobile Multi-Cloud: The "ARIANNA" Experience

R. D. Pietro, M. Scarpa, A. Puliafito
{"title":"How Much Enhancing Confidentiality and Integrity on Data Can Affect Mobile Multi-Cloud: The \"ARIANNA\" Experience","authors":"R. D. Pietro, M. Scarpa, A. Puliafito","doi":"10.1109/WETICE.2019.00077","DOIUrl":null,"url":null,"abstract":"Ensuring confidentiality and integrity on data in Cloud computing is still a big challenge. With the advent of the 'Mobile Cloud Computing (MCC)\", confidentiality and integrity issues has reemerged inheriting all the limitations introduced by the use of the mobile devices. ARIANNA is an Android application representing the software enabler which allows to extend the SSME Cloud Service, the experimental multi-Cloud system deployed and maintained at the \"Cloud Data Center - University of Messina\", towards the mobile world represented by the smart devices. In this paper, we present a quantitative performance analysis comparing some commercial Cloud storage services such as Google Drive, Dropbox and OpenStack Swift, with the multi-Cloud approach enabled by the ARIANNA application. In order to evaluate \"how much\" the overhead introduced by ARIANNA approach costs, we conducted several experiments taking into account the mobile application in real and dynamic multi-Cloud scenarios. The paper discusses some consideration about the actual adoptability of this approach in real application domain and some software and architectural improvements to further improve ARIANNA's performance.","PeriodicalId":116875,"journal":{"name":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2019.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ensuring confidentiality and integrity on data in Cloud computing is still a big challenge. With the advent of the 'Mobile Cloud Computing (MCC)", confidentiality and integrity issues has reemerged inheriting all the limitations introduced by the use of the mobile devices. ARIANNA is an Android application representing the software enabler which allows to extend the SSME Cloud Service, the experimental multi-Cloud system deployed and maintained at the "Cloud Data Center - University of Messina", towards the mobile world represented by the smart devices. In this paper, we present a quantitative performance analysis comparing some commercial Cloud storage services such as Google Drive, Dropbox and OpenStack Swift, with the multi-Cloud approach enabled by the ARIANNA application. In order to evaluate "how much" the overhead introduced by ARIANNA approach costs, we conducted several experiments taking into account the mobile application in real and dynamic multi-Cloud scenarios. The paper discusses some consideration about the actual adoptability of this approach in real application domain and some software and architectural improvements to further improve ARIANNA's performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强数据的保密性和完整性能在多大程度上影响移动多云:“ARIANNA”体验
确保云计算中数据的保密性和完整性仍然是一个巨大的挑战。随着“移动云计算(MCC)”的出现,机密性和完整性问题重新出现,继承了使用移动设备所带来的所有限制。ARIANNA是一个Android应用程序,它代表了软件使能器,可以扩展SSME云服务,即在“墨西拿大学云数据中心”部署和维护的实验性多云系统,以智能设备为代表的移动世界。在本文中,我们对一些商业云存储服务(如Google Drive、Dropbox和OpenStack Swift)与ARIANNA应用程序启用的多云方法进行了定量性能分析。为了评估ARIANNA方法带来的开销“有多少”,我们进行了几个实验,考虑了真实和动态多云场景下的移动应用程序。本文讨论了该方法在实际应用领域中实际可采用性的一些考虑,以及进一步提高ARIANNA性能的一些软件和架构改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-Time SCADA Attack Detection by Means of Formal Methods Architecture of Anomaly Detection Module for the Security Operations Center Privacy Preserving Intrusion Detection Via Homomorphic Encryption A Deep Learning Framework to Predict Rating for Cold Start Item Using Item Metadata Mining Developer's Behavior from Web-Based IDE Logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1