{"title":"Prospects of controlling the propagation of high-power THz radiation by passive optical elements including 3D printed","authors":"D. Ezhov, D. Lubenko, V. Losev, Y. Andreev","doi":"10.1117/12.2614227","DOIUrl":null,"url":null,"abstract":"Optical properties of different commercial plastics for fused deposition modeling 3D printing are defined at room temperature in the spectral range 0.2˗1.2 THz. We compare absorption coefficients and refractive index of ABS, PETG, and SBS printed 1-4 mm plates. Different types of optical elements for controlling high-power THz radiation are studied. A comparison is made of the efficiency of attenuation of linearly polarized THz radiation with homemade band-pass polarizers obtained by etching copper from a flexible polyimide substrate. Filters and polarizers created using 3D printing or by deposition of polymer matrix with magnetic particles under external field are cost-effective and can be easily changed or replaced. Comparison between plastic insets, filters based on magnetic particles, and polyimide film filters are made.","PeriodicalId":205170,"journal":{"name":"Atomic and Molecular Pulsed Lasers","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Pulsed Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2614227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Optical properties of different commercial plastics for fused deposition modeling 3D printing are defined at room temperature in the spectral range 0.2˗1.2 THz. We compare absorption coefficients and refractive index of ABS, PETG, and SBS printed 1-4 mm plates. Different types of optical elements for controlling high-power THz radiation are studied. A comparison is made of the efficiency of attenuation of linearly polarized THz radiation with homemade band-pass polarizers obtained by etching copper from a flexible polyimide substrate. Filters and polarizers created using 3D printing or by deposition of polymer matrix with magnetic particles under external field are cost-effective and can be easily changed or replaced. Comparison between plastic insets, filters based on magnetic particles, and polyimide film filters are made.