Sang-Won Kim, N. Yoshikawa, Hiroshi Kobayashi, Toshiro Fujisawa, Takeru Sano
{"title":"Numerical Fatigue Life Evaluation With Experimental Results for Type III Accumulators","authors":"Sang-Won Kim, N. Yoshikawa, Hiroshi Kobayashi, Toshiro Fujisawa, Takeru Sano","doi":"10.1115/PVP2018-84188","DOIUrl":null,"url":null,"abstract":"Composite Reinforced Accumulator (CRA) is widely used in hydrogen stations. A high-cost pressure cycle test is mandatory to ensure the safety of accumulator in present regulations. To reduce the high cost, the aim is to develop a methodology of numerical fatigue life prediction of CRA with results of pressure cycle tests.\n An axisymmetric finite element model for the Type III accumulator is created and actual loading process including autofrettage pressure is simulated. Stress amplitude caused by pressure cycle is evaluated based on the instructions in KD-3 of ASME BPVC VIII 3-2015. By comparing stress amplitude distributions with the leak positions after the pressure cycle test, and plotting the results in the design fatigue curve, it could be shown that fatigue life prediction of Type III accumulator can be done by precise finite element analysis of the liner including dome part, where the principal axes of stress change in pressure cycle.","PeriodicalId":384066,"journal":{"name":"Volume 3B: Design and Analysis","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Composite Reinforced Accumulator (CRA) is widely used in hydrogen stations. A high-cost pressure cycle test is mandatory to ensure the safety of accumulator in present regulations. To reduce the high cost, the aim is to develop a methodology of numerical fatigue life prediction of CRA with results of pressure cycle tests.
An axisymmetric finite element model for the Type III accumulator is created and actual loading process including autofrettage pressure is simulated. Stress amplitude caused by pressure cycle is evaluated based on the instructions in KD-3 of ASME BPVC VIII 3-2015. By comparing stress amplitude distributions with the leak positions after the pressure cycle test, and plotting the results in the design fatigue curve, it could be shown that fatigue life prediction of Type III accumulator can be done by precise finite element analysis of the liner including dome part, where the principal axes of stress change in pressure cycle.
复合增强蓄能器(CRA)在加氢站中应用广泛。在现行规定中,为保证蓄能器的安全,必须进行高成本的压力循环试验。为了降低高成本,研究了基于压力循环试验结果的CRA疲劳寿命数值预测方法。建立了III型蓄能器的轴对称有限元模型,模拟了包括自增强压力在内的实际加载过程。根据ASME BPVC VIII -2015中KD-3的说明对压力循环引起的应力幅值进行评估。通过压力循环试验后应力幅值分布与泄漏位置的对比,并将结果绘制到设计疲劳曲线中,可以通过对应力主轴随压力循环变化的含顶盖部分进行精确的有限元分析来预测III型蓄能器的疲劳寿命。