N. Wagner, F. Daschner, A. Scheuermann, Moritz Schwing
{"title":"Estimation of the Soil Water Characteristics from dielectric relaxation spectra","authors":"N. Wagner, F. Daschner, A. Scheuermann, Moritz Schwing","doi":"10.1109/SAS.2014.6798954","DOIUrl":null,"url":null,"abstract":"The frequency dependence of dielectric material properties of water saturated and unsaturated porous materials such as soil is not only disturbing in applications with high frequency electromagnetic (HF-EM) techniques but also contains valuable information of the material due to strong contributions by interactions between the aqueous pore solution and mineral phases. Hence, broadband HF-EM sensor techniques enable the estimation of soil physico-chemical parameters such as water content, texture, mineralogy, cation exchange capacity and matric potential. In this context, a multivariate (MV) approach was applied to estimate the Soil Water Characteristic Curve (SWCC) from experimentally determined dielectric relaxation spectra of a silty clay soil. The results of the MV-approach were compared with results obtained from empirical equations and theoretical models as well as a novel hydraulic/electromagnetic coupling approach. The applied MV-approach gives evidence, (i) of a physical relationship between soil dielectric relaxation behavior and soil water characteristics as an important hydraulic material property and (ii) the applicability of appropriate sensor techniques for the estimation of physico-chemical parameters of porous media from broadband measured dielectric spectra.","PeriodicalId":125872,"journal":{"name":"2014 IEEE Sensors Applications Symposium (SAS)","volume":"12 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2014.6798954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The frequency dependence of dielectric material properties of water saturated and unsaturated porous materials such as soil is not only disturbing in applications with high frequency electromagnetic (HF-EM) techniques but also contains valuable information of the material due to strong contributions by interactions between the aqueous pore solution and mineral phases. Hence, broadband HF-EM sensor techniques enable the estimation of soil physico-chemical parameters such as water content, texture, mineralogy, cation exchange capacity and matric potential. In this context, a multivariate (MV) approach was applied to estimate the Soil Water Characteristic Curve (SWCC) from experimentally determined dielectric relaxation spectra of a silty clay soil. The results of the MV-approach were compared with results obtained from empirical equations and theoretical models as well as a novel hydraulic/electromagnetic coupling approach. The applied MV-approach gives evidence, (i) of a physical relationship between soil dielectric relaxation behavior and soil water characteristics as an important hydraulic material property and (ii) the applicability of appropriate sensor techniques for the estimation of physico-chemical parameters of porous media from broadband measured dielectric spectra.