Nearest Feature Line: A Tangent Approximation

R. He, Meng Ao, Shi-ming Xiang, S.Z. Li
{"title":"Nearest Feature Line: A Tangent Approximation","authors":"R. He, Meng Ao, Shi-ming Xiang, S.Z. Li","doi":"10.1109/CCPR.2008.22","DOIUrl":null,"url":null,"abstract":"Nearest feature line (NFL) (S.Z. Li and J. Lu, 1999) is an efficient yet simple classification method for pattern recognition. This paper presents a theoretical analysis and interpretation of NFL from the perspective of manifold analysis, and explains the geometric nature of NFL based similarity measures. It is illustrated that NFL, nearest feature plane (NFP) and nearest feature space (NFS) are special cases of tangent approximation. Under the assumption of manifold, we introduce localized NFL (LNFL) and nearest feature spline (NFB) to further enhance classification ability and reduce computational complexity. The LNFL extends NFL's Euclidean distance to a manifold distance. And for NFB, feature lines are constructed along with a manifold's variation which is defined on a tangent bundle. The proposed methods are validated on a synthetic dataset and two standard face recognition databases (FRGC version 2 and FERET). Experimental results illustrate its efficiency and effectiveness.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Nearest feature line (NFL) (S.Z. Li and J. Lu, 1999) is an efficient yet simple classification method for pattern recognition. This paper presents a theoretical analysis and interpretation of NFL from the perspective of manifold analysis, and explains the geometric nature of NFL based similarity measures. It is illustrated that NFL, nearest feature plane (NFP) and nearest feature space (NFS) are special cases of tangent approximation. Under the assumption of manifold, we introduce localized NFL (LNFL) and nearest feature spline (NFB) to further enhance classification ability and reduce computational complexity. The LNFL extends NFL's Euclidean distance to a manifold distance. And for NFB, feature lines are constructed along with a manifold's variation which is defined on a tangent bundle. The proposed methods are validated on a synthetic dataset and two standard face recognition databases (FRGC version 2 and FERET). Experimental results illustrate its efficiency and effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最近特征线:切线近似
最近特征线(Nearest feature line, NFL)是一种简单有效的模式识别分类方法(Li S.Z. and J. Lu, 1999)。本文从流形分析的角度对NFL进行了理论分析和解释,并解释了基于NFL的相似性度量的几何性质。说明了NFL、最近特征平面(NFP)和最近特征空间(NFS)是切线近似的特殊情况。在流形假设下,为了进一步提高分类能力和降低计算复杂度,我们引入了局部特征样条(nlfl)和最近特征样条(NFB)。LNFL将NFL的欧氏距离扩展为流形距离。对于NFB,特征线是与在切线束上定义的流形变化一起构建的。在一个合成数据集和两个标准人脸识别数据库(FRGC version 2和FERET)上验证了所提出的方法。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Gait Recognition Method Based on Standard Deviation Energy Image A New Method for Facial Beauty Assessment Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR Study on Highlights Detection in Soccer Video Based on the Location of Slow Motion Replay and Goal Net Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1