G. Sviridov, Cedric Beliard, G. Simon, A. Bianco, P. Giaccone, Dario Rossi
{"title":"Demo abstract: Leveraging AI players for QoE estimation in cloud gaming","authors":"G. Sviridov, Cedric Beliard, G. Simon, A. Bianco, P. Giaccone, Dario Rossi","doi":"10.1109/infocomwkshps50562.2020.9162732","DOIUrl":null,"url":null,"abstract":"Quality of Experience (QoE) assessment in video games is notorious for its burdensomeness. Employing human subjects to understand network impact on the perceived gaming QoE presents major drawbacks in terms of resources requirement, results interpretability and poor transferability across different games. To overcome these shortcomings, we propose to substitute human players with artificial agents trained with state-of-the-art Deep Reinforcement Learning techniques. Equivalently to traditional QoE assessment, we measure the in-game score achieved by an artificial agent for the game of Doom for varying network parameters. Our results show that the proposed methodology can be applied to understand fine-grained impact of network conditions on gaming experience while opening a lot of new opportunities for network operators and game developers.","PeriodicalId":104136,"journal":{"name":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/infocomwkshps50562.2020.9162732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quality of Experience (QoE) assessment in video games is notorious for its burdensomeness. Employing human subjects to understand network impact on the perceived gaming QoE presents major drawbacks in terms of resources requirement, results interpretability and poor transferability across different games. To overcome these shortcomings, we propose to substitute human players with artificial agents trained with state-of-the-art Deep Reinforcement Learning techniques. Equivalently to traditional QoE assessment, we measure the in-game score achieved by an artificial agent for the game of Doom for varying network parameters. Our results show that the proposed methodology can be applied to understand fine-grained impact of network conditions on gaming experience while opening a lot of new opportunities for network operators and game developers.