Demo abstract: Leveraging AI players for QoE estimation in cloud gaming

G. Sviridov, Cedric Beliard, G. Simon, A. Bianco, P. Giaccone, Dario Rossi
{"title":"Demo abstract: Leveraging AI players for QoE estimation in cloud gaming","authors":"G. Sviridov, Cedric Beliard, G. Simon, A. Bianco, P. Giaccone, Dario Rossi","doi":"10.1109/infocomwkshps50562.2020.9162732","DOIUrl":null,"url":null,"abstract":"Quality of Experience (QoE) assessment in video games is notorious for its burdensomeness. Employing human subjects to understand network impact on the perceived gaming QoE presents major drawbacks in terms of resources requirement, results interpretability and poor transferability across different games. To overcome these shortcomings, we propose to substitute human players with artificial agents trained with state-of-the-art Deep Reinforcement Learning techniques. Equivalently to traditional QoE assessment, we measure the in-game score achieved by an artificial agent for the game of Doom for varying network parameters. Our results show that the proposed methodology can be applied to understand fine-grained impact of network conditions on gaming experience while opening a lot of new opportunities for network operators and game developers.","PeriodicalId":104136,"journal":{"name":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/infocomwkshps50562.2020.9162732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quality of Experience (QoE) assessment in video games is notorious for its burdensomeness. Employing human subjects to understand network impact on the perceived gaming QoE presents major drawbacks in terms of resources requirement, results interpretability and poor transferability across different games. To overcome these shortcomings, we propose to substitute human players with artificial agents trained with state-of-the-art Deep Reinforcement Learning techniques. Equivalently to traditional QoE assessment, we measure the in-game score achieved by an artificial agent for the game of Doom for varying network parameters. Our results show that the proposed methodology can be applied to understand fine-grained impact of network conditions on gaming experience while opening a lot of new opportunities for network operators and game developers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演示摘要:利用AI玩家在云游戏中进行QoE估计
电子游戏中的体验质量(QoE)评估因其繁琐而臭名昭著。利用人类受试者来理解网络对感知游戏QoE的影响,在资源需求、结果可解释性和不同游戏之间的可移植性方面存在主要缺陷。为了克服这些缺点,我们建议用经过最先进的深度强化学习技术训练的人工智能代替人类玩家。与传统的QoE评估相同,我们衡量《毁灭战士》的人工代理在不同网络参数下获得的游戏内得分。我们的研究结果表明,所提出的方法可以应用于理解网络条件对游戏体验的细粒度影响,同时为网络运营商和游戏开发商开辟了许多新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for Bandwidth and Latency Guaranteed Service in New IP Network Energy Minimization for MEC-enabled Cellular-Connected UAV: Trajectory Optimization and Resource Scheduling A Multi-property Method to Evaluate Trust of Edge Computing Based on Data Driven Capsule Network Real Time Adaptive Networking using Programmable 100Gbps NIC on Data Transfer Nodes IRS Assisted Multiple User Detection for Uplink URLLC Non-Orthogonal Multiple Access
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1