Patient identification methods based on medical imagery and their impact on patient privacy and open medical data

Laura Carolina Martínez Esmeral, A. Uhl
{"title":"Patient identification methods based on medical imagery and their impact on patient privacy and open medical data","authors":"Laura Carolina Martínez Esmeral, A. Uhl","doi":"10.1109/CBMS55023.2022.00079","DOIUrl":null,"url":null,"abstract":"In this paper, we provide an overview of techniques for human subject identification from biomedical signals, highlighting the potential threat for patient privacy considering public repositories of medical data. After an in-depth review of lesser known approaches, we conclude that performing a disentanglement and elimination of the identity related attributes from the medical image data is a potential solution for this problem.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we provide an overview of techniques for human subject identification from biomedical signals, highlighting the potential threat for patient privacy considering public repositories of medical data. After an in-depth review of lesser known approaches, we conclude that performing a disentanglement and elimination of the identity related attributes from the medical image data is a potential solution for this problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于医学图像的患者识别方法及其对患者隐私和开放医疗数据的影响
在本文中,我们概述了从生物医学信号中识别人类受试者的技术,强调了考虑到公共医疗数据存储库对患者隐私的潜在威胁。在深入回顾了鲜为人知的方法后,我们得出结论,从医学图像数据中执行解纠缠和消除身份相关属性是解决此问题的潜在解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1