Partition Crossover for Pseudo-Boolean Optimization

R. Tinós, L. D. Whitley, F. Chicano
{"title":"Partition Crossover for Pseudo-Boolean Optimization","authors":"R. Tinós, L. D. Whitley, F. Chicano","doi":"10.1145/2725494.2725497","DOIUrl":null,"url":null,"abstract":"A partition crossover operator is introduced for use with NK landscapes, MAX-kSAT and for all k-bounded pseudo-Boolean functions. By definition, these problems use a bit representation. Under partition crossover, the evaluation of offspring can be directly obtained from partial evaluations of substrings found in the parents. Partition crossover explores the variable interaction graph of the pseudo-Boolean functions in order to partition the variables of the solution vector. Proofs are presented showing that if the differing variable assignments found in the two parents can be partitioned into q non-interacting sets, partition crossover can be used to find the best of 2q possible offspring. Proofs are presented which show that parents that are locally optimal will always generate offspring that are locally optimal with respect to a (more restricted) hyperplane subspace. Empirical experiments show that parents that are locally optimal generate offspring that are locally optimal in the full search space more than 80 percent of the time. Experimental results also show the effectiveness of the proposed crossover when used in combination with a hybrid genetic algorithm.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

A partition crossover operator is introduced for use with NK landscapes, MAX-kSAT and for all k-bounded pseudo-Boolean functions. By definition, these problems use a bit representation. Under partition crossover, the evaluation of offspring can be directly obtained from partial evaluations of substrings found in the parents. Partition crossover explores the variable interaction graph of the pseudo-Boolean functions in order to partition the variables of the solution vector. Proofs are presented showing that if the differing variable assignments found in the two parents can be partitioned into q non-interacting sets, partition crossover can be used to find the best of 2q possible offspring. Proofs are presented which show that parents that are locally optimal will always generate offspring that are locally optimal with respect to a (more restricted) hyperplane subspace. Empirical experiments show that parents that are locally optimal generate offspring that are locally optimal in the full search space more than 80 percent of the time. Experimental results also show the effectiveness of the proposed crossover when used in combination with a hybrid genetic algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伪布尔优化的分区交叉
引入分区交叉算子用于NK景观,MAX-kSAT和所有k有界伪布尔函数。根据定义,这些问题使用位表示。在划分交叉下,子代的评价可以直接从亲本中找到的子串的部分评价得到。划分交叉研究伪布尔函数的变量交互图,以划分解向量的变量。证明了如果在两个亲本中找到的不同变量分配可以被划分为q个不相互作用的集合,那么可以使用划分交叉来找到2q个可能的最优子代。给出了一些证明,证明了对于一个(更有限的)超平面子空间,局部最优的父代总是会产生局部最优的子代。经验实验表明,在80%以上的时间里,局部最优的亲代会产生在整个搜索空间中局部最优的后代。实验结果也证明了该交叉算法与混合遗传算法结合使用时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights From Adversarial Fitness Functions Hypomixability Elimination In Evolutionary Systems Black-box Complexity of Parallel Search with Distributed Populations Information Geometry of the Gaussian Distribution in View of Stochastic Optimization Fixed Budget Performance of the (1+1) EA on Linear Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1