Estimating electrical energy consumption using Linear Genetic Programming

B. Barán, J. Paciello, Vanessa J. Cañete, N. Hernández
{"title":"Estimating electrical energy consumption using Linear Genetic Programming","authors":"B. Barán, J. Paciello, Vanessa J. Cañete, N. Hernández","doi":"10.1145/2832987.2833021","DOIUrl":null,"url":null,"abstract":"The electrical energy distribution subsystem is a component of the power delivery infrastructure that carries electricity from the high voltage transmission circuits to the customers. In order to prevent damage of the electrical energy distribution infrastructure, companies typically use transformers with digital meters that allow monitoring in real time, certain parameters like the amount of transformed energy. In several underdeveloped countries as Paraguay, the meters are installed only on a limited number of key transformers. Therefore, it is necessary to estimate the power consumption for the unmetered transformers using existing measurements. For this aim, this paper proposes the application of Linear Genetic Programming (LGP) to find good estimates of the power consumption of unmetered transformers. The proposal is compared with an analytical consumption estimation model proposed in a previous related work, being 13% better on average and 41% better in the best case. Dimensionality reduction proves to be useful to speed up calculation without losing much precision in the LGP estimations.","PeriodicalId":416001,"journal":{"name":"Proceedings of the The International Conference on Engineering & MIS 2015","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the The International Conference on Engineering & MIS 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2832987.2833021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The electrical energy distribution subsystem is a component of the power delivery infrastructure that carries electricity from the high voltage transmission circuits to the customers. In order to prevent damage of the electrical energy distribution infrastructure, companies typically use transformers with digital meters that allow monitoring in real time, certain parameters like the amount of transformed energy. In several underdeveloped countries as Paraguay, the meters are installed only on a limited number of key transformers. Therefore, it is necessary to estimate the power consumption for the unmetered transformers using existing measurements. For this aim, this paper proposes the application of Linear Genetic Programming (LGP) to find good estimates of the power consumption of unmetered transformers. The proposal is compared with an analytical consumption estimation model proposed in a previous related work, being 13% better on average and 41% better in the best case. Dimensionality reduction proves to be useful to speed up calculation without losing much precision in the LGP estimations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用线性遗传规划估算电能消耗
电能分配子系统是电力传输基础设施的一个组成部分,它将电力从高压传输电路输送到用户。为了防止对电力分配基础设施的破坏,公司通常使用带有数字仪表的变压器,以便实时监控转换能量的数量等某些参数。在巴拉圭等几个不发达国家,电表只安装在数量有限的关键变压器上。因此,有必要使用现有的测量来估计未计量变压器的功耗。为此,本文提出应用线性遗传规划(LGP)对未计量变压器的功耗进行较好的估计。该方案与之前相关工作中提出的分析性消费估算模型进行了比较,平均提高了13%,最好情况下提高了41%。在LGP估计中,降维可以在不降低精度的情况下加快计算速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Discrete Flower Pollination Algorithm for Graph Coloring Problem QoS web service Security Access Control case study using HTTP Secured Socket Layer Approach An improved k-Means Clustering algorithm for Intrusion Detection using Gaussian function A Feature Vector Based Approach for Software Component Clustering and Reuse Using K-means A Proposed Method to Recognize the Research Trends using Web-based Search Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1