A data recomputation approach for reliability improvement of scratchpad memory in embedded systems

H. Sayadi, Hamed Farbeh, Amir Mahdi Hosseini Monazzah, S. Miremadi
{"title":"A data recomputation approach for reliability improvement of scratchpad memory in embedded systems","authors":"H. Sayadi, Hamed Farbeh, Amir Mahdi Hosseini Monazzah, S. Miremadi","doi":"10.1109/DFT.2014.6962091","DOIUrl":null,"url":null,"abstract":"Scratchpad memory (SPM) is extensively used as the on-chip memory in modern embedded processors alongside of the cache memory or as its alternative. Soft errors in SPM are one of the major contributors to system failures, due to ever-increasing susceptibility of SPM cells to energetic particle strikes. Since a large fraction of soft errors occurs in the shape of Multiple-Bit Upsets (MBUs), traditional memory protection techniques, i.e., Error Correcting Code (ECCs), are not affordable for SPM protection; mainly because of their limited error coverage and/or their high overheads. This paper proposes a novel algorithm that efficiently protects SPM with high error correction capability and minimum overheads. This proposed data recomputation algorithm recomputes the correct value whenever an error is detected in the SPM. The simulation results show that the proposed algorithm significantly reduces the vulnerability of SPM from 91.7% to 8.4%. Moreover, the proposed algorithm imposes no area overhead and no hardware modification, meanwhile its performance overhead is less than 1%.","PeriodicalId":414665,"journal":{"name":"2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2014.6962091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Scratchpad memory (SPM) is extensively used as the on-chip memory in modern embedded processors alongside of the cache memory or as its alternative. Soft errors in SPM are one of the major contributors to system failures, due to ever-increasing susceptibility of SPM cells to energetic particle strikes. Since a large fraction of soft errors occurs in the shape of Multiple-Bit Upsets (MBUs), traditional memory protection techniques, i.e., Error Correcting Code (ECCs), are not affordable for SPM protection; mainly because of their limited error coverage and/or their high overheads. This paper proposes a novel algorithm that efficiently protects SPM with high error correction capability and minimum overheads. This proposed data recomputation algorithm recomputes the correct value whenever an error is detected in the SPM. The simulation results show that the proposed algorithm significantly reduces the vulnerability of SPM from 91.7% to 8.4%. Moreover, the proposed algorithm imposes no area overhead and no hardware modification, meanwhile its performance overhead is less than 1%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种提高嵌入式系统刮本存储器可靠性的数据重计算方法
在现代嵌入式处理器中,刮刮板存储器(SPM)被广泛用作片上存储器,与高速缓存存储器一起使用或作为其替代品。由于SPM细胞对高能粒子撞击的敏感性不断增加,SPM中的软误差是导致系统故障的主要原因之一。由于很大一部分软错误以多比特扰流(MBUs)的形式发生,传统的存储器保护技术,即纠错码(ecc),对于SPM保护来说是负担不起的;主要是因为它们有限的错误覆盖率和/或高昂的开销。提出了一种具有高纠错能力和最小开销的有效保护SPM的新算法。提出的数据重计算算法在SPM中检测到错误时重新计算正确的值。仿真结果表明,该算法将SPM的漏洞从91.7%显著降低到8.4%。此外,该算法不增加面积开销和硬件修改,性能开销小于1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated formal approach for debugging dividers using dynamic specification Artificial intelligence based task mapping and pipelined scheduling for checkpointing on real time systems with imperfect fault detection Characterizing soft error vulnerability of cache coherence protocols for chip-multiprocessors SAM: A comprehensive mechanism for accessing embedded sensors in modern SoCs Designs and analysis of non-volatile memory cells for single event upset (SEU) tolerance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1