Gurudutt Bhat, Marcin Kielar, M. Gholami, Pankaj Sah, Ajay K. Pandey, P. Sonar
{"title":"Low bandgap donor-acceptor-donor-based TPA-azaBODIPY-TPA small molecule for flexible near-infrared organic photodetectors","authors":"Gurudutt Bhat, Marcin Kielar, M. Gholami, Pankaj Sah, Ajay K. Pandey, P. Sonar","doi":"10.1117/12.2677285","DOIUrl":null,"url":null,"abstract":"Organic photodetectors (OPDs) hold great promise for use in flexible electronics as they can be designed on substrates featuring various shapes and using cost-effective solution-processed methods. Organic conjugated materials offering two or more distinct optoelectronic functions are especially appealing here as they provide multifunctionality while also retaining the ease of fabrication and low-cost advantage. One such material is TPA-azaBODIPY-TPA that has been shown to feature ideal charge transfer properties and excitation energy levels. In our recent work, we demonstrated the versatile nature of this material acting as either a charge transport interlayer in perovskite solar cells, or as a light-absorbing layer in OPDs. TPA-azaBODIPY-TPA-based solar cellsshowed a 60 % increase in power conversion efficiency when compared to a control device using a conventional interlayer PEDOT:PSS. Having also demonstrated the successful utilization of TPA-azaBODIPY-TPA in OPDs manufactured on glass substrates, we further explore its applications in the design and fabrication of flexible OPDs for near-infrared sensing. Fabricated devices on flexible substrates show a near-infrared spectral responsivity of 49 mA W-1 at 730 nm, a high linear dynamic range of 110 dB and fast temporal responses below 100 μs. With robust thermal stability as well as excellent solubility and processability, TPA-azaBODIPY-TPA is found to be perfect candidate for the next-generation of smart optoelectronic flexible devices.","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"31 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2677285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Organic photodetectors (OPDs) hold great promise for use in flexible electronics as they can be designed on substrates featuring various shapes and using cost-effective solution-processed methods. Organic conjugated materials offering two or more distinct optoelectronic functions are especially appealing here as they provide multifunctionality while also retaining the ease of fabrication and low-cost advantage. One such material is TPA-azaBODIPY-TPA that has been shown to feature ideal charge transfer properties and excitation energy levels. In our recent work, we demonstrated the versatile nature of this material acting as either a charge transport interlayer in perovskite solar cells, or as a light-absorbing layer in OPDs. TPA-azaBODIPY-TPA-based solar cellsshowed a 60 % increase in power conversion efficiency when compared to a control device using a conventional interlayer PEDOT:PSS. Having also demonstrated the successful utilization of TPA-azaBODIPY-TPA in OPDs manufactured on glass substrates, we further explore its applications in the design and fabrication of flexible OPDs for near-infrared sensing. Fabricated devices on flexible substrates show a near-infrared spectral responsivity of 49 mA W-1 at 730 nm, a high linear dynamic range of 110 dB and fast temporal responses below 100 μs. With robust thermal stability as well as excellent solubility and processability, TPA-azaBODIPY-TPA is found to be perfect candidate for the next-generation of smart optoelectronic flexible devices.