Counterfactual-Augmented Data for Multi-Hop Knowledge Base Question Answering

Yingting Li
{"title":"Counterfactual-Augmented Data for Multi-Hop Knowledge Base Question Answering","authors":"Yingting Li","doi":"10.1145/3442442.3453706","DOIUrl":null,"url":null,"abstract":"The rise of the counterfactual concept promoted the study of reasoning, and we applied it to Knowledge Base Question Answering (KBQA) multi-hop reasoning as a way of data augmentation for the first time. Intuitively, we propose a model-agnostic Counterfactual Samples Synthesizing(CSS) training scheme. The CSS uses two augmentation methods Q-CSS and T-CSS to augment the training set. That is, for each training instance, we create two augmented instances, one per augmentation method. Furthermore, perform the Dynamic Answer Equipment(DAE) algorithm to dynamically assign ground-truth answers for the expanded question, constructing counterfactual examples. After training with the supplemented examples, the KBQA model can focus on all key entities and words, which significantly improved model’s sensitivity. Experimental verified the effectiveness of CSS and achieved consistent improvements across settings with different extents of KB incompleteness.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3453706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The rise of the counterfactual concept promoted the study of reasoning, and we applied it to Knowledge Base Question Answering (KBQA) multi-hop reasoning as a way of data augmentation for the first time. Intuitively, we propose a model-agnostic Counterfactual Samples Synthesizing(CSS) training scheme. The CSS uses two augmentation methods Q-CSS and T-CSS to augment the training set. That is, for each training instance, we create two augmented instances, one per augmentation method. Furthermore, perform the Dynamic Answer Equipment(DAE) algorithm to dynamically assign ground-truth answers for the expanded question, constructing counterfactual examples. After training with the supplemented examples, the KBQA model can focus on all key entities and words, which significantly improved model’s sensitivity. Experimental verified the effectiveness of CSS and achieved consistent improvements across settings with different extents of KB incompleteness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多跳知识库问答的反事实增强数据
反事实概念的兴起促进了推理的研究,并首次将其应用于知识库问答(KBQA)的多跳推理中,作为数据扩充的一种方式。直观地,我们提出了一个模型不可知的反事实样本合成(CSS)训练方案。CSS使用Q-CSS和T-CSS两种增强方法对训练集进行增强。也就是说,对于每个训练实例,我们创建两个增强实例,每个增强方法一个。此外,执行动态答案设备(DAE)算法,为扩展问题动态分配基本事实答案,构建反事实示例。利用补充的样例进行训练后,KBQA模型可以专注于所有关键实体和关键词,显著提高了模型的灵敏度。实验验证了CSS的有效性,并在不同KB不完整程度的设置中取得了一致的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do I Trust this Stranger? Generalized Trust and the Governance of Online Communities Explainable Demand Forecasting: A Data Mining Goldmine Tracing the Factoids: the Anatomy of Information Re-organization in Wikipedia Articles AI Principles in Identifying Toxicity in Online Conversation: Keynote at the Third Workshop on Fairness, Accountability, Transparency, Ethics and Society on the Web Fairness beyond “equal”: The Diversity Searcher as a Tool to Detect and Enhance the Representation of Socio-political Actors in News Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1