Sorting things out? Machine learning in complex construction projects

May Shayboun, C. Koch
{"title":"Sorting things out? Machine learning in complex construction projects","authors":"May Shayboun, C. Koch","doi":"10.35490/EC3.2019.161","DOIUrl":null,"url":null,"abstract":"This research includes answers from 324 main contractor representatives and 256 clients for a survey in Sweden, 2014. The literature review covers project management success in construction projects. A statistical correlation method is used to select the features that are strongly correlated with three performance indicators: cost variance, time variance and client- and contractor satisfaction. A linear regression prediction model is presented. The conclusion is an identification of the most correlating factors to project performance, and that human related factors in the project life cycle have higher impact on project success than the external factors and technical aspects of buildings.","PeriodicalId":126601,"journal":{"name":"Proceedings of the 2019 European Conference on Computing in Construction","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 European Conference on Computing in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35490/EC3.2019.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research includes answers from 324 main contractor representatives and 256 clients for a survey in Sweden, 2014. The literature review covers project management success in construction projects. A statistical correlation method is used to select the features that are strongly correlated with three performance indicators: cost variance, time variance and client- and contractor satisfaction. A linear regression prediction model is presented. The conclusion is an identification of the most correlating factors to project performance, and that human related factors in the project life cycle have higher impact on project success than the external factors and technical aspects of buildings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整理事情?复杂建筑项目中的机器学习
本研究包括2014年瑞典324名主要承包商代表和256名客户的回答。文献综述涵盖了建设项目中项目管理的成功。使用统计相关方法来选择与三个绩效指标:成本方差、时间方差和客户和承包商满意度密切相关的特征。提出了一种线性回归预测模型。结论是确定了与项目绩效最相关的因素,以及项目生命周期中与人为相关的因素对项目成功的影响高于外部因素和建筑物的技术方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An IFC data preparation workflow for building energy performance simulation BIM-based Holonic System for Real-Time Pathfinding in Building Emergency Scenario Semantic and syntactic interoperability of BIM and asset management data Digital built environment maturity model: Digital twins advancing smart infrastructure asset management Optimum topological configurations of sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1