{"title":"Flight and Ground Operations in Support of Airframe Noise Reduction Tests","authors":"E. Baumann, E. Waggoner","doi":"10.2514/6.2018-2970","DOIUrl":null,"url":null,"abstract":"The National Aeronautics and Space Administration (NASA) Acoustic Research Measurements (ARM) project was established to evaluate via flight tests the noise reduction benefits of the Adaptive Compliant Trailing Edge (ACTE) technology along with various main landing gear noise reduction concepts. The ACTE replaces the original Fowler flaps on the NASA SubsoniC Research Aircraft Testbed (SCRAT), thus creating a seamless trailing edge that provides significant noise abatement benefits. The various main landing gear noise reduction concepts are grouped under the LAnding Gear noisE Reduction (LAGER) task and consist of fairings placed on the main landing gear along with two separate treatments applied to the main landing gear wheel well cavities. This paper discusses the tasks necessary to prepare each of these technologies for the ARM flights. The LAGER hardware was taken from model-scale concepts tested in wind tunnels to flight hardware, which had to be cleared as airworthy for the ARM flights. The ACTE flaps were initially intended to be removed from the SCRAT prior to the start of the ARM project. Retaining the ACTE flaps on the aircraft for a longer period of time to support the ARM flights resulted in additional inspections and considerations since the ACTE flaps were flown longer and at certain flight conditions for longer periods of time than initially analyzed. The flight and ground operations required for the ARM tests required extensive coordination among multiple groups and organizations in order to be successful. This paper provides an overview of the hardware development, ground operations, and flight operations which went into acquiring the desired acoustic measurements. In general, the flights were successful and demonstrated the noise reduction benefits of the ACTE flaps, the LAGER gear fairings, and the LAGER gear cavity treatments.","PeriodicalId":429337,"journal":{"name":"2018 AIAA/CEAS Aeroacoustics Conference","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 AIAA/CEAS Aeroacoustics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-2970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The National Aeronautics and Space Administration (NASA) Acoustic Research Measurements (ARM) project was established to evaluate via flight tests the noise reduction benefits of the Adaptive Compliant Trailing Edge (ACTE) technology along with various main landing gear noise reduction concepts. The ACTE replaces the original Fowler flaps on the NASA SubsoniC Research Aircraft Testbed (SCRAT), thus creating a seamless trailing edge that provides significant noise abatement benefits. The various main landing gear noise reduction concepts are grouped under the LAnding Gear noisE Reduction (LAGER) task and consist of fairings placed on the main landing gear along with two separate treatments applied to the main landing gear wheel well cavities. This paper discusses the tasks necessary to prepare each of these technologies for the ARM flights. The LAGER hardware was taken from model-scale concepts tested in wind tunnels to flight hardware, which had to be cleared as airworthy for the ARM flights. The ACTE flaps were initially intended to be removed from the SCRAT prior to the start of the ARM project. Retaining the ACTE flaps on the aircraft for a longer period of time to support the ARM flights resulted in additional inspections and considerations since the ACTE flaps were flown longer and at certain flight conditions for longer periods of time than initially analyzed. The flight and ground operations required for the ARM tests required extensive coordination among multiple groups and organizations in order to be successful. This paper provides an overview of the hardware development, ground operations, and flight operations which went into acquiring the desired acoustic measurements. In general, the flights were successful and demonstrated the noise reduction benefits of the ACTE flaps, the LAGER gear fairings, and the LAGER gear cavity treatments.